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Abstract

Worst-case analysis studies the worst expected outcome over a prede-
termined time length. We find that if the distribution has a heavy tail,
the historical maximum as an estimator (non-parametric approach) is
always excessive, i.e., upwards biased. Relying on a tail model (semi-
parametric approach) reduces the bias considerably when the variable
is very-heavy tailed. But for the less-heavy tailed distributions this
relationship is reversed. Estimates for a large sample of US stock
returns indicate that this pattern in the bias is indeed present in fi-
nancial data. With respect to risk management, this induces overly
conservative precautionary measures if the worst case is estimated
incorrectly.
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1 Introduction

On the walls of many old churches one can find markings caused by floods.
These markings function as recordings of high water levels of nearby rivers.
The highest of these ‘high water marks’ provide an estimate for the question:
disregarding a once in recorded history flood, what should the height of the
dike be to protect the land mass behind the dike. In a similar fashion, stress
tests are often done with the worst observed historical event to construct
scenarios to test for instance the robustness of constructs. Another example
from financial markets is the concern of investors about the performance of
their securities holdings on the worst day over a particular horizon. Worst-
case analysis studies the worst outcome over a predetermined time length,
with a typical question: What value is going to be surpassed on the worst day
over the next 100 years or 2,500 days for instance? In spite of its increasing
importance, little is known about worst-case analysis and the properties of
its estimators.

There are generally three main approaches to worst-case analysis. The sim-
plest is to directly read the worst case from the empirical distribution, in our
case the historical maximum. This is the non-parametric approach (NP).
One can also assume a model only for the tail of the distribution; this con-
stitutes the semi-parametric approach (SP). Given that tail behavior of eco-
nomic data are often characterized as having a heavy tail (Gabaix, 2009),
tails are modelled as power laws. This approach necessitates an estimate
for the tail index, which dictates by what power the density runs off. The
third approach is based on specifying a fully parametric distribution for all
outcomes and estimating its parameters. Of these three alternatives, the last
is the only one that is not recommended.1 The estimates are dominated by
the more frequent center observations, so that the fit is optimal for a typical
observation, but not the most extreme.

In this paper we contribute towards the understanding of worst-case esti-
mators by comparing the non-parametric and semi-parametric approaches
for heavy-tailed distributions. Both worst-case estimators are upwards bi-
ased. The method that produces the smallest bias depends on the heaviness
of the tail. The semi-parametric approach produces a smaller bias for dis-
tributions with a relatively small tail index, i.e., a heavier tail. Given the
SP approach uses all the tail observations in its estimation, it has a strictly
smaller variance than the NP approach, which is based on only the most

1Duffie and Pan (1997) give a comprehensive overview of the different methodologies
and issues regarding tail quantile estimation.
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extreme observation. When one is concerned about both the bias and the
variance, like a mse criterion, there is a strict preference for the use of the
SP estimator in the case that the tail is very heavy tailed (small tail index).

To derive properties of the most extreme-order statistic as the NP quantile
estimator, we make use of extreme value theory (EVT). Under the assump-
tion that the underlying distribution satisfies a first-order (Hall) expansion,
one can derive the asymptotic distribution of the most extreme order statis-
tic. Using the asymptotic distribution we show that the NP estimator is
upward biased. The bias is increasing in the heaviness of the tail. Further-
more, the variance of the NP approach is disproportionally large and does
not exist for distributions with a tail index lower than or equal to 2, as is the
case for a Student-t distribution with two degrees of freedom.

The SP tail quantile estimator for the class of heavy-tailed distributions is
the Weissman (1978) estimator. This SP estimator necessitates the estima-
tion of the tail index. Given the tail index estimator by Hill (1975), Goldie
and Smith (1987) show that the SP estimator is asymptotically normally
distributed with the bias and variance increasing in the heaviness of the tail.
Furthermore, the tail index estimator requires a choice on the number of tail
observations k that are used in the estimation. Choosing a large k causes the
tail index estimator to be more biased, however this decreases its variance.

The trade-off between the bias and the variance of estimators depends on
the preferences of the user. With a lexicographic ordering of bias and sub-
sequently variance, a comparison of only the bias of the estimators makes
sense. Giving weight to the variance of the estimator in a punitive manner
requires a reconsideration of the preferred estimator. For instance a popular
criteria like the mse, equally balances the squared bias with the variance of
the estimator.

Considering the bias only, we show that the choice of estimator with the
lowest bias hinges on the tail index. For very heavy-tailed distributions, the
SP estimator produces the smallest bias. This relationship reverses as the
distribution becomes less heavy-tailed. For instance, in the Student-t distri-
bution family the degrees of freedom are equal to the tail index. Therefore,
the higher the degrees of freedom the less heavy the tail becomes. For the
Student-t distribution family the absolute bias of the SP estimator becomes
larger than that of the NP approach for 5 degrees of freedom or more. The
unconditional distribution of the stationary solution to ARCH/GARCH type
processes is also heavy tailed, where the tail index is a function of the co-
efficient for the lagged volatility of the disturbance term. The switching of
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the relative size of the biases for the ARCH/GARCH process occurs around
a tail index of 3.48.

We also consider the asymptotic variance of both estimators. The variance
of the NP estimator is relatively large due to its reliance on a single outcome.
For heavy-tailed distributions with a tail index smaller or equal to two, the
variance of the estimator is unbounded. The SP approach relies on all the k
tail observations for its estimation, giving the SP estimator a strictly smaller
variance. Stepping away from lexicographic preferences, for loss functions
where the variance is punitive, the switching in preference for NP over the SP
estimator occurs at higher values of the tail index. For the less heavy-tailed
distributed variables, one still needs to consider the bias-variance trade-off
of the estimators.

The comparison of the biases brings two predictions, which we test on real
world data. First, the difference in bias between the NP and SP approach,
i.e., NP-SP, is a decreasing function of the tail index. Second, this difference
is increasing in k for k > exp(2).2 To investigate these predictions, we use the
securities return data by the Center for Research in Security Price (CRSP)
to estimate the worst case via the two approaches for each individual stock.
We evaluate the relationship between the difference in the two worst-case
estimates and the tail estimate and k.

The results from the empirical analysis reveal that for stocks with a small
tail index, the SP estimate is smaller than the NP estimate. The relative
size of the biases switches for stocks with a tail index above 3. This suggests
that the processes that generates individual stock returns induces a bias that
switches in relative size at a lower tail index than what variables from the
Student-t distribution family would generate. As the ARCH/GARCH type
processes have a switching point at a lower tail index, the distribution is more
likely similar to that of an ARCH/GARCH type process. This is further cor-
roborate by the large volume of literature on volatility clustering of financial
returns (Engle, 1982; Bollerslev, 1986). In relation to the second predic-
tion, we find that k is positively related to the difference NP-SP. Therefore,
confirming the prediction that come from comparing of the bias.

In the next section we introduce the two quantile estimators and compare
their asymptotic bias and variance. In the subsequent section we explore the

2Given the other parameters, at k = exp(2) the asymptotic bias of the SP approach
attains its largest value. Therefore, for a given sample size, k larger or smaller than exp(2)
the bias becomes smaller. In the empirical application we opt to look at the cases where
k > exp(2) to maximize the sample.
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extent of the bias in US securities data. The last section concludes.

2 Worst-case

To formally define the worst case consider a sample of size n,

{X1, X2, ..., Xn}

from distribution function, F (x). The sorted sample, i.e., order statistics,
can be represented as

Mn = X(1,n) ≥ X(2,n) ≥ ... ≥ X(n,n).

Note that for the left tail we have to multiply all observations by -1. We
define the probability that the maximum is larger than some threshold x as
P (Mn > x). The worst case in this setting is defined as

P← (1/n) = x1/n.

In many applications the challenge is to find the quantile at which there is a
1/n probability that the most severe outcome exceeds this quantile. Quantile
estimation this deep into the tail is notoriously difficult. This paper, relies
on EVT to contrast the bias and the variance of two approaches, namely:
the non-parametric and semi-parametric estimator.

2.1 Non-parametric estimator

The non-parametric estimator is the maximum observation out of a sample.
To characterize the bias and variance of this estimator, consider the class of
distribution functions with regularly-varying tails, i.e.,

lim
n→∞

F (−tx)

F (−t)
= x−α,

with x > 0 and α > 0. In that case there exists a slowly varying function
L (x) such that we may write for large x > 0,

P (X ≤ −x) ∼ L (x) x−α

and
P (X > x) ∼ L (x) x−α.
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By x ∼ y we mean that x is asymptotic to y. A function is slowly varying if,

lim
n→∞

L (−tx)

L (−t)
= 1.

This class of distribution functions is characterized as being heavy-tailed.

To derive the bias of the largest observation as a worst-case estimator, we
start with a relatively general approach. Consider the Hall expansion (Hall
and Welsh, 1985) of a heavy-tailed distribution function,3

1− F (x) = Ax−α
[
1 + Bx−β + o

(
x−β

)]
(1)

as x → ∞, where α > 0, A > 0, β > 0 and B is a real number. Here A
and B are the first and second-order scale parameters, where α and β are
the first and second-order shape parameters. Furthermore, o

(
x−β

)
contains

the higher-order terms of the Hall expansion. Assuming the Xi are i.i.d. and
consider the first-order expansion, then

P (anMn ≤ s) = P

(
Mn ≤ s

an

)
≈

[
1− s−α

n

]n
,

where an = (An)−
1/α. For n → ∞, on the basis of the classical extreme value

theorem (using the definition of the exponential function)

lim
n→∞

P
(
Mn ≤ s

an

)
e−s−α = 1.

Given a cumulative distribution function (cdf) that satisfies (1), we can derive
the asymptotic expectation in case α > 1

AE [Mn] = (An)
1
α Γ

(
1− 1

α

)
(2)

and the asymptotic variance for α > 2

AVar (Mn) = (An)
2
α

[
Γ

(
1− 2

α

)
− Γ

(
1− 1

α

)2
]

(3)

based on the first-order Hall expansion.4 Here Γ () refers to the gamma
function.

3For the Pareto distribution we observe that the Hall expansion perfectly fits the first-
order term. All of the standard heavy-tailed distributions, like the Student-t, Pareto,
symmetric stable distribution or the unconditional distribution of the stationary solution
to a GARCH(1,1) process, satisfy (1).

4See Appendix A.1 for the derivation. Furthermore, for a derivation of the density for
the lower order-statistics, see theorem 2.2.2 in Leadbetter et al. (1983). There EVT for
the maximum is extended to lower order-statistics by means of their Poisson property.
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2.2 The semi-parametric approach

To contrast the bias and variance of the NP approach, we compare it to
a semi-parametric estimator. The starting point for the SP estimator is
the first-order expansion in (1). Inverting the probability gives the quantile
estimator,

x =

(
1− F

A

)−1/α
.

To work out the empirical counter part of the scale parameter A, we first
fix the probability at an intermediate order statistic X(k,n). By isolating A,
A = (1 − F )

[
X(k,n)

]α, and replacing the probabilit 1 − F with k/n, we get
the scale estimator

A = k/n
[
X(k,n)

]α
.

Substituting back A into the quantile estimate one obtain the SP tail quantile
estimator of Weissman (1978)

x̂SP (k) = X(k,n)k
1/α̂k

at 1 − F (x) = 1/n, where α̂k is estimated with the Hill estimator using the
k largest order statistics.

For distributions where (1) applies, Goldie and Smith (1987) derive the dis-
tribution of the SP quantile estimator

√
k

log (k)

(
x̂SP (k)

x(p)
− 1

)
∼ N

(
−sign (B)√

2βα
,
1

α2

)
, (4)

where B and β are the second-order scale and shape parameters in (1). Here
x(p) is the true quantile.

2.3 The NP and SP estimators under lexicographic
ordering

The two approaches, the NP and SP, each have their own advantages and
disadvantages. While the NP approach is much simpler to implement, the
SP approach benefits from the use of multiple observations to further the
accuracy of the estimates. However, the SP approach depends on a correct
specification of the SP distribution and upon identifying a threshold X(k,n).
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To shed more light on the use of these two estimators, we first compare
their bias. From (2) and (4) the asymptotic bias of the two approaches is as
follows:

AE

(
x̂SP (k)

x(1/n)
− 1

)
≈− sign (B)√

2βα

log (k (n))√
k (n)

SP (5)

AE

(
x̂NP

x(1/n)
− 1

)
≈ Γ

(
1− 1

α

)
− 1. NP (6)

As an approximation to x(1/n) in (6), we solve for the first-order hall expan-
sion of the cdf 1/n = Axα, giving x(1/n) = (An)1/α.

A first observation from comparing the biases is that the asymptotic bias
of the NP approach is independent of k, as opposed to the SP estimator.
Second, the asymptotic bias of the SP estimators goes to 0 as k(n) → ∞.5
The SP approach benefits from a larger sample to more precisely estimate
the parameters. This gives the SP approach a strict preference in large sam-
ples.

For intermediate values of k(n), in finite samples, the comparison between
expressions (5) and (6) reveals that for particular parameter constellations
the absolute bias of the SP approach is larger than the NP approach. For
α = 1, Γ

(
1− 1

α

)
= ∞, which implies that for very heavy-tailed distributions

the bias of the NP approach is large. However, for α → ∞ both biases
tend to zero. Furthermore, Γ′[1 − 1/α]|α=∞ = −γα−2, where γ is the Euler-
Mascheroni constant. This implies that, for a given β, as α approaches ∞
the absolute bias of the NP approach goes to zero faster than the SP ap-
proach. Therefore, it is possible that there exists a point, where for α > α∗

the absolute bias of the SP approach is larger than the NP approach.

Figures 1 portrays the relationship between α and the bias in the estimators
for the Student-t distribution family. For the Student-t distribution β = 2
and α equals the degrees of freedom. For instance, in case of the Student-t(3)
distribution the ratio of the bias NP/ (NP + SP) is approximately 0.62 (the
red dot in the figure), indicating that the bias for the NP approach is much
larger. For a Student-t(10) the ratio lies around 0.40, illustrating that the
SP approach has the larger bias for the less heavy-tailed distributions. The
figure also reveals that the relative size of their bias switches around α∗ ≈ 5
for this distribution family.

5When studying the statistical properties of the tail, usually the conditions k(n) → ∞
and k(n)/n → 0 for n → ∞ are imposed.
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Other classes of heavy-tailed distributions have different values for α and
β. In Figure 2 we portray at which combination of α and β the bias of the
NP estimator becomes smaller than that of the SP approach.6 One way
of viewing the figure is by taking a fixed β, e.g., β = 2 as is the case for
the Student-t distribution in the previous example. Consequentially, the red
dot indicates the point on the graph where the Student-t(3) distribution is
situated. For small values of α, very heavy-tailed distributions, the bias of
the NP estimator is larger than the SP estimator. As α increases in value,
we enter the gray area, i.e., the region where the bias of the SP approach is
larger than the NP estimators. Therefore, the difference in the bias, NP-SP,
is a decreasing function in α.

Other distribution families have different parameter values for β and α, there-
fore having different points where the biases switch in absolute value, if they
switch at all.7 Sun and de Vries (2018) show that for the ARCH/GARCH
type processes β = 1, B < 0 and α > 0. Figure 2 shows that α∗ ≈ 3.48
for these type of processes, implying the biases switch at a lower α∗ than for
the Student-t distribution family. For the family of symmetric stable and
Fréchet distributions the bias is always smaller for the SP estimator. Given
that for both distributions β = α and that for the symmetric stable distri-
butions α < 2, the bias of the NP approach is always larger.

The edge between the white and gray area in the figure are the points where
the absolute biases of the NP and SP approach are equal, given k = exp(2).
The dotted line in the graphs indicates the new edge when increasing k by
a factor of two. The threshold k only plays a role in the bias of the SP es-
timator and has a negative relationship with the bias. This pushes the edge
to the right when deviating from k = exp(2).

The comparison of the biases leads to two empirical predictions. First, the
difference between the NP and SP estimator is a decreasing function in α.
Second, given that k > exp(2), the difference is increasing in the number of
order statistics used in the SP approach. This dictates a positive relationship
between the difference in the biases and k.

6The bias of the SP approach depends on log(k)/
√
k. Therefore, for given values of α

and β, the bias of SP approach reaches its maximum for k = exp(2). Consequently, we
compare the biases at k = exp(2) and in the empirical exercise we analyze the cases where
k > exp(2).

7See Table 3 in the Appendix for the Hall expansion parameter values for the Student-t,
symmetric stable and Fréchet distribution families.
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Figure 1: This figure depicts the comparison of the biases of the SP and NP estimator as
defined in (6) and (5) for the Student-t distribution family. For this family of distribution
α equals the degree of freedom and β = 2. Furthermore, k = exp(2). The vertical axis
indicates the ratio of the NP to the sum of the NP and SP estimators expectations. The
x-axis give the degrees of freedom.

2.4 Variance and mse

Expressions (3) and (4) allow us to compare the variance of the estimators.
First note that the SP approach has the benefit of using multiple observations
to model the tail. Therefore, (4) shows that as the sample size increases the
variance of the estimator goes to zero. This is not the case for the variance
of the NP estimators. Secondly, for α ≤ 2, the variance of the NP estimator
does not exist and therefore for very heavy-tailed distributions the variance
of the NP is vastly larger than the SP approach. This is also displayed in
Figure 3, where the ratio of the variance of the two estimators are shown as
a function of the tail index. Combined with the comparison of the biases,
this indicates a strict preference for the use of the SP approach over the NP
approach for very heavy-tailed distributed variables.

A frequently applied loss function to balance the two vices is to minimize
the mse. The mse puts equal weight on the squared bias and the variance.
Figure 4 in the Appendix depicts the ratio of the mse for the two worst-case
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Figure 2: This figure depicts the comparison of the biases of the SP and NP estimator
as in Equation (5) and (6). On the vertical axis indicates the level of the second-order
shape parameters, β, in the Hall expansion. The horizontal axis indicates the level of
the tail index. The white area shows the combinations for α and β where the absolute
bias of the NP estimator is larger than the SP estimator. The gray area shows for which
combination of α and β the absolute bias of the SP estimator is larger. For the gray area
k = exp(2). For the dotted line k = 2exp(2), shifting the gray area down and to the right.
The red dot showcases the case for the Student-t (3) distribution.

estimators. The figure shows that under the mse criterion, the SP estimator
is strictly preferred over the NP estimator for α < 13, given β = 2 and
k = exp(2).

3 Empirical Application

To test the empirical predictions we use US stock return data. The CRSP
dataset contains a large panel of daily stock prices for US stocks, the kind of
assets financial institutions typically hold. The large cross-section of stocks
allows us to compare a large number of worst-case estimates for the NP and
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Figure 3: This figure displays the variance ratio of the semi-parametric and the non-
parametric worst-case estimator as a function of α. The variance ratio is given by
σ2

NP/(σ2
SP+σ2

NP). For the variance of the semi-parametric estimator, we choose k = exp(2).

SP estimators.

3.1 Data

The CRSP database contains individual stock data from 31-12-1925 to 31-12-
2015 for NYSE, AMEX, NASDAQ, and NYSE Arca. In the main analysis,
n = 888 stocks are used. To be included, we require that stocks are traded
on one of the four exchanges during the whole measurement period, which
is between 01-01-1995 and 01-01-2011. The size of the time series for each
individual firm is 4,030 days. We need to ensure that the empirical proba-
bility at the largest-order statistic is the same across securities. Therefore,
the choice of the specified fixed sample period is a trade-off between obtain-
ing a large cross-sectional sample of securities and a long enough time series
for the EVT estimation. In additional analysis we use a rolling window to
change the sample to evaluate the robustness of the empirical analysis. Fur-
thermore, we only use common stocks (share code 10 and 11) with a price
above 5 dollars at the start of the measurement period, as is customary when
using these data.
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3.2 Empirical analysis

The SP estimator requires the estimation of tail exponent α and a choice
of the number of tail observations k. For this empirical application we use
the Hill estimator to estimate α. This estimator depends on the selection of
a high-order statistic as a threshold, i.e., X(k,n). This nuisance statistic is
obtained by the KS-distance metric developed in Danielsson et al. (2016).8
Their method focuses on fitting the tail quantiles by choosing the right k
and simultaneously attain α̂k. They show that alternative approaches, e.g.,
Danielsson et al. (2001) and Drees and Kaufmann (1998), underperform sig-
nificantly, especially when it comes to the quantiles deep in the tail of the
distribution. To show robustness of the results, for Table 4, in the Appendix,
we use a fixed sample fraction and obtain similar results.

Given the estimate of the tail index and nuisance statistic k, the quantile
can be estimated semi-parametrically for each individual stock. The differ-
ence,

NPi − SPi = X
(1,n)
i −X

(ki,n)
i k

1/α̂ki
i , (7)

for stock i has an estimate of the tail index in the SP quantile estimator. To
investigate the initial relationship between the bias in the two estimators and
the tail index, we sort the individual stocks by their estimated αi. Based on
α̂i, stocks are assigned to five different baskets with a range of {α̂i < 2, 2 <
α̂i ≤ 3, 3 < α̂i ≤ 4, 4 < α̂i ≤ 5, 5 ≤ α̂i}.

Panel (a) and (b) in Table 1 portrays, for the left and right tail respectively,
that the relative size of the bias changes as a function of α̂i. The individual
stocks for which the relative size of the bias seems to switch is around α̂i ≈ 3.
It is difficult to determine the exact switch point for real data, due to the
unknown values of the second-order parameters, β and B, in the bias of the
SP estimator. In addition, the Hill estimator is generally biased (Hall, 1982).
The monotonic decrease in the average difference between the baskets is sup-
portive of the result that the bias of the SP estimator overtakes the bias of
the NP quantile estimator. The results for the difference in the median of
each basket convey the same story.

In rows three to five, the standard deviation, 1% and 99% quantiles of the
buckets show that although the mean and median showcase a switch between
the severity of the bias, this might be statistically insignificant. Therefore,

8The KS-distance metric chooses the threshold which minimizes the maximum quantile
distance between the empirical and Pareto distribution. See Appendix A.2 for details.
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Table 1: NPi − SPi sorted by α̂i

All α̂i < 2 2 ≤ α̂i < 3 3 ≤ α̂i < 4 4 ≤ α̂i < 5 α̂i ≥ 5

Mean -0.042 4.234 0.909 -0.371 -1.197 -1.861
Median -0.701 5.749 0.754 -0.701 -1.337 -1.865
St. Dev. 2.235 5.664 2.926 1.300 1.154 0.604

Q0.01 -3.745 -3.567 -4.650 -2.520 -3.480 -2.921
Q0.99 7.708 9.186 10.472 3.087 1.768 -0.491

Rank Sum test 0.00002 0.250 0.397 0.000 0.000 0.000
N 888 4 329 392 144 19

(a) Left tail
All α̂i < 2 2 ≤ α̂i < 3 3 ≤ α̂i < 4 4 ≤ α̂i < 5 α̂i ≥ 5

Mean 0.028 6.597 1.232 -0.649 -1.518 -2.203
Median -0.832 4.382 1.137 -1.008 -1.464 -2.106
St. Dev. 2.797 6.893 2.903 1.565 1.458 0.995

Q0.01 -4.000 0.051 -4.314 -3.320 -4.257 -4.097
Q0.99 7.973 27.236 8.219 4.069 1.689 -0.334

Rank Sum test 0.001 0.000 0.113 0.000 0.000 0.000
N 884 22 314 384 151 13

(b) Right tail
This table reports summary statistics for the difference between the largest order statistic
and the semi-parametric quantile estimator, NPi − SPi, for the left tail and right tail of
US stock i’s return. For the SPi estimator, αi is estimated with the Hill estimator. To
determine the number of order statistics for the Hill estimator, we use the KS-distance
metric described in Danielsson et al. (2016). Column 1 reports the summary statistics
of NPi − SPi for all stocks. The second column reports the summary statistics of the
difference for the stock with α̂i ≤ 2. Columns 3 through 6 report the summary statistics
for the stocks with the corresponding α̂i. The first three rows report the mean, median and
standard deviation for NPi−SPi of the corresponding baskets. Q0.01 and Q0.99 report the
1% and 99% quantile for the distribution of the different basket of stocks. The next row
reports the Wilcoxon signed-rank test p-value, testing non-parametrically for a difference
in mean rank. N is the number of stocks in each basket. The individual stock data is
from the CRSP dataset. The sample period is from 01-01-1995 to 01-01-2011.

we employ the Wilcoxon signed-rank sum test to test for the difference in
size of NPi and SPi estimates within the buckets. We find that for stocks
with a modestly heavy-tailed return distribution, α̂i > 3, the estimates are
significantly different from one another. The SPi quantile estimates for these
stocks tend to have larger values than the NPi quantile estimates. This is
reversed and insignificant for stocks with α̂i ≤ 3. In the lower panel, the
same pattern emerges for the right tail of the distribution.

Table 2 reports the results of regressing NPi − SPi on their respective tail
index estimates and nuisance parameter ki. The signs of the coefficient es-
timates in the regression analysis are as predicted by the comparison of the
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Table 2: Bias in stock returns

NP-SP
Left tail Right tail

α̂i −1.260∗∗∗ −0.723∗∗∗ −1.809∗∗∗ −1.032∗∗∗
(0.093) (0.115) (0.117) (0.152)

ki/n ∗ 100 0.336∗∗∗ 0.222∗∗∗ 0.417∗∗∗ 0.263∗∗∗
(0.024) (0.029) (0.026) (0.034)

Constant 4.132∗∗∗ −0.911∗∗∗ 1.774∗∗∗ 5.930∗∗∗ −1.156∗∗∗ 2.652∗∗∗
(0.316) (0.093) (0.436) (0.393) (0.115) (0.571)

Observations 864 864 864 867 867 867
R2 0.174 0.191 0.226 0.216 0.227 0.266

This table reports the regression results for the difference between the largest order statis-
tic and the semi-parametric quantile estimator, NPi − SPi, for US stocks. For the SPi

estimator, αi is estimated with the Hill estimator. To determine the number of order
statistics for the Hill estimator we use the KS-distance metric described in Danielsson
et al. (2016). Here ki/n ∗ 100 is the percentage of order statistics from the total sample
used to estimate the Hill estimate. We include only stocks with ki > exp(2). The indi-
vidual stock data is from the CRSP dataset. The sample period is from 01-01-1995 to
01-01-2011.

biases. The coefficient of α̂i in the first column shows that an increase of the
tail index by 1 decreases the difference, NPi − SPi, in the worst-case return
estimates by 1.260 percentage points. The difference switches from positive
to negative around a tail index of 3.3. The previous section showed that the
switching point is around α = 5 for the Student-t distribution family and
around α = 3.48 for the ARCH/GARCH type processes. Based on this com-
parison the value of α∗ = 3.3 deduced from the regressions indicates that the
data possibly comes from an ARCH/GARCH type process as opposed to the
i.i.d. process assumed for the Student-t distribution. The vast literature on
the presence of volatility clustering in financial data corroborates this (Engle,
1982; Bollerslev, 1986).

When including ki/n in the regression, the coefficient is as predicted. An
increase in the number of order statistics used, past k > exp(2), decreases
the bias in the SP approach relative to the NP approach and therefore in-
creases the difference in the worst-case estimates. Both α̂i and ki have a
significant effect on the difference in estimates. This holds for both the left
and right tail of the distribution. To demonstrate robustness of the results,
Figure 5 in the Appendix shows the estimates of the third and sixth model
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for a 10-year annual rolling window between 1975 to 2015.

In the regressions presented in Table 2 we use α̂i instead of the true tail
index. The measurement error in α̂i could be correlated with NPi−SPi lead-
ing to false inference. To address this issue we use an instrumental variable
approach. In a two-stage least-square regression, we use kurtosis, skewness
and the standard deviation of the empirical distribution as instruments for
the tail index.9 Table 5, in the Appendix, shows that the higher moments
of the return distribution explain a large portion of the variation in α̂i. The
second-stage regression shows that the relationship between the bias and the
tail index is not driven by the measurement error in α̂i.

4 Conclusion

With worst-case analysis becoming increasingly common in practice, it is of
interest to evaluate the qualities of common methods for such applications.
The simplest and perhaps the most common way is to estimate the worst case
by taking the most extreme outcome in the historical sample. Alternatively,
one could estimate the tail of the distribution by semi-parametric methods
and use that to calculate the worst case.

Both approaches have redeeming properties. The non-parametric approach,
the largest historical observation, is easy to implement and does not rely
on parametric assumptions. The semi-parametric approach benefits from
using all the tail observations to fit the tail parameters. Based solely on
the comparison of the bias either method is best. For the heaviest tails, the
semi-parametric approach is best. As we consider random variables with
larger tail exponents, the historical maxima eventually becomes relatively
less biased. Taking both the bias and variance of the estimators into account
further reinforces that the semi-parametric approach is the more appropriate
choice for very heavy-tailed distributed variables.

9We have excluded the top and bottom 5% of the sample to prevent the tail observations
from influencing the instruments. Results based on the full sample are quantitatively
equivalent to the censored sample.
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A Technical Appendix

A.1 Expectation and Variance

To formally derive the expectation and the variance of the maximum and the
lower-order statistics, consider a sample of size n,

{X1, X2, ..., Xn}

from distribution function, F (x). The sorted sample, i.e., order statistics,
can be represented as

Mn = X(1,n) ≥ X(2,n) ≥ ... ≥ X(n,n).

The order-statistics follow a binomial distribution:

G(v,n) (x) =
v−1∑
r=0

(
n

r

)
[1− F (x)]r [F (x)]n−r . (8)

Suppose one is interested in the distribution of the maximum realization:

Pr (Mn < x) = [F (x)]n = G(1,n) (x) . (9)

Similar to the standard central limit theorem for the asymptotic distribution
of the arithmetic mean, Fisher and Tippett (1928) and Gnedenko (1943)
provide a limit theorem for the asymptotic distribution of the maximum,
i.e., EVT.

EVT gives the conditions under which there exist sequences bn and an such
that

lim
n→∞

[F (anx+ bn)]
n → G(1,n) (x) .

Now suppose X1, ..., Xn have distribution function from the class with regu-
larly varying tails F , i.e.,

lim
s→∞

1− F (sx)

1− F (s)
= x−α, α > 0. (10)

Given this regular variation property and appropriate norming constants
an and bn, the heavy-tailed limit distribution, G(1,n), takes the form of the
Fréchet distribution. Theorem 2.2.2 in Leadbetter et al. (1983) extends the
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EVT for the maximum to lower-order statistics by means of the Poisson prop-
erty of the lower-order statistics. In particular, the asymptotic distribution
of the vth largest order statistic is

G(v,n) (x) → G(1,n) (x)
v−1∑
s=0

(
− log

[
G(1,n) (x)

])s

s!
. (11)

Therefore, for distributions functions with regularly varying tails we have,

G(v,n) (x) = e−a
α
nx

−α
v−1∑
s=0

(aαnx
−α)

s

s!
.

For the density we find

g(v,n) (x) = αaαnx
−α−1e−a

α
nx

−α

[
(aαnx

−α)
v−1

[v − 1]!

]
.

Given the density, determining the expectation of the vth order statistic is
straightforward:

E
[
X(n−v+1,n)

]
=

∫ ∞
0

xαaαnx
−α−1e−a

α
nx

−α

[
(aαnx

−α)
v−1

[v − 1]!

]
dx.

Applying a change of variable y = aαnx
−α we get

E
[
X(n−v+1,n)

]
=

an
v − 1

∫ ∞
0

y
1
αyv−1e−ydy

=
an

[v − 1]!
Γ

[
v − 1

α

]
.

Given the above expectation, determining the variance of the order statistics
is a trivial matter:

var
[
X(n−v+1,n)

]
= E

[(
X(n−v+1,n)

)2]− E
[
X(n−v+1,n)

]2
=

a2n
[v − 1]!

Γ

[
v − 2

α

]
−
[

an
[v − 1]!

Γ

[
v − 1

α

]]2
(12)
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A.2 KS-distance metric

The purpose of the KS-distance metric is to find the optimal number of order
statistics to estimate the tail index with the Hill estimator. This method
achieves this by minimizing the distance between the empirical distribution
and Pareto distribution over the quantile dimension. The starting point for
locating k∗ is the first-order term of Hall’s power expansion:

F(x) = 1− Ax−α[1 + o(1)]. (13)

This function is identical to a Pareto distribution if the higher-order terms
are ignored. By inverting (13), we get the quantile function

x =

(
1− F (x)

A

) 1
−α

. (14)

To turn the quantile function into an estimator, the empirical probability k/n
is substituted for 1−F (x). The A is replaced with the estimator k

n

(
X(k,n)

)α
and α is estimated by the Hill estimator. The quantile is thus estimated by

q (k, i) =

(
i

k

)−1/α̂k

X(k,n). (15)

Here X(k,n) is the kth order statistic such that k/n comes closest to the prob-
ability level 1− F (x).

Given the quantile estimator, the empirical quantile and the penalty function,
we get

k∗ = arg inf
k

[
sup
i

∣∣X(i,n) − q (k, i)
∣∣] , for k = 1, ..., T, (16)

where T > k is the region over which the KS-distance metric is measured.
Here X(i,n) is the order statistic and q (k, i) is the estimated quantile from
(15). This is done for different levels of k. The k, which produces the smallest
maximum horizontal deviation along all the tail observations until T , is the
k∗ for the Hill estimator.
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B Tables

Table 3: Hall expansion parameters values
Stable Student-t Fréchet

α (1, 2) (2,∞) (2,∞)
β α 2 α

A 1
π
Γ (α) sin

(
απ
2

)
1√
απ

Γ(α+1
2 )

Γ(α
2 )

α(α−1)/2 1

B −1
2
Γ(2α) sin(απ)

Γ(α) sin(απ
2 )

−α2

2
α+1
α+2

1
2

Table 4: Bias in stock returns: Fixed threshold

NP-SP
Left tail Right tail

α̂i −0.481∗∗∗ −0.852∗∗∗
(0.092) (0.138)

Constant 4.351∗∗∗ 6.286∗∗∗
(0.405) (0.594)

Observations 889 889
R2 0.030 0.041

This table reports the regression results for the difference between the largest order statis-
tic and the semi-parametric quantile estimator, NPi − SPi, for US stocks. For the SPi

estimator, αi is estimated with the Hill estimator. The number of order statistics is fixed
at 0.25% of the total sample. The individual stock data is from the CRSP dataset. The
securities need to be traded on NYSE, AMEX, NASDAQ, and NYSE Arca exchanges over
the period from 01-01-1995 to 01-01-2011. To be included, the stock price over the sample
needs to be above 5 dollars.
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Table 5: Bias in stock returns: IV Regression
NP-SP

Left tail Right tail
Stage 2 Stage 1 Stage 2 Stage 1

α̂fitted
i −1.568∗∗∗ −0.823∗∗

(0.269) (0.400)
ki/n ∗ 100 0.090∗ −0.092∗∗∗ 0.294∗∗∗ −0.102∗∗∗

(0.048) (0.008) (0.065) (0.007)
Kurtosis −0.014∗∗∗ −0.004∗∗∗

(0.001) (0.001)
Skewness 0.291∗∗∗ −0.105∗∗∗

(0.031) (0.026)
StDev 11.497∗∗∗ 25.255∗∗∗

(2.640) (2.823)
Constant 4.911∗∗∗ 3.475∗∗∗ 1.880 3.147∗∗∗

(1.004) (0.064) (1.481) (0.071)
Observations 864 864 867 867
R2 0.221 0.492 0.231 0.526
F Statistic 122.285∗∗∗ 208.334∗∗∗ 129.598∗∗∗ 239.066∗∗∗

This table reports the regression results of the two-stage least-square estimation. We
instrument the estimated tail index. In the first stage we estimate α̂i = b0 + b1 ∗
Kurtosisi + b2 ∗Skewnessi + b3 ∗StDevi + b4 ∗ (ki/n ∗ 100)+ εi. Here kurtosis, skewness
and standard deviation are the moments of the return distribution of stock i. We exclude
the top and bottom 5% of the observations in the measurement of the higher moments. In
the second stage we estimate NPi−SPi = c0+c1 ∗ α̂fitted

i +c2 ∗ (ki/n∗100)+νi. For the
SPi estimator, αi is estimated with the Hill estimator. To determine the number of order
statistics for the Hill estimator we use the KS-distance metric described in Danielsson et al.
(2016). Here ki/n ∗ 100 is the percentage of order statistics used from the total sample to
estimate the Hill estimate. We include only stocks with ki > exp(2). The individual stock
data is from the CRSP dataset. The sample period is from 01-01-1995 to 01-01-2011.
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C Figures
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Figure 4: This figure displays the MSE ratio of the semi-parametric and the non-
parametric worst-case estimator as a function of α. From (2), (3) and (4), we construct
the MSE = V ariance + Bais2. The MSE ratio is given by MSENP/(MSESP+MSENP). For
the MSE of the semi-parametric estimator we choose k = exp(2) and β = 2.
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Figure 5: These figures depict the stability of the parameter estimates of Table 2. The
solid lines are the parameter estimates over time and the dotted lines are their respective
95% error bounds. The two top and two bottom panels show the results for the left tail
and right tail of the distribution, respectively. The left figures depict the results for the
coefficient estimates α̂i and the right figures show the coefficient estimates ki/n ∗ 100. The
regression equation, NPi − SPi = c + a α̂i + b ki/n ∗ 100 + ei, is estimated each year. In
the estimation, the data from the preceding 10 years are used to estimate NPi − SPi, α̂i,
and ki/n. We include only stocks with ki > exp(2). The individual stock data is from the
CRSP dataset. The sample period is from 01-01-1965 to 31-12-2015.
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