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sion (DA) component. This pricing kernel transforms the Gaussian-GARCH model
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1 Introduction

Disappointment aversion (DA) plays a critical role in shaping investor behavior and has
become an influential concept in asset pricing. In this expected utility framework, first
introduced by Gul (1991), DA captures the idea that agents overweight outcomes that
fall short of a reference point, leading to kinked utility functions. This distortion has di-
rect implications for asset prices, particularly when investors face asymmetric risk. Given
their strong sensitivity to investor preferences, option markets provide a powerful testing
ground for DA. Yet, despite a rich literature on belief distortions and asymmetric prefer-
ences, few option pricing models explicitly incorporate DA into the pricing kernel.

In this paper, we propose a reduced-form option pricing framework that embeds DA into
a dynamic stochastic discount factor. Our specification builds on Christoffersen et al.
(2013) (henceforth CHJ) but introduces time-varying risk sensitivities and explicitly sep-
arates the DA contribution from the standard risk-neutral (RN) transformation. The
model flexibly accommodates different GARCH specifications for the physical process,
which processes have proven effective in capturing key empirical features of asset re-
turns, such as volatility clustering and the leverage effect (Bollerslev, 1986; Engle and
Ng, 1993). As such, the model nests prior benchmark models as special cases. Impor-
tantly, the closed-form solution for one-day options enables clean identification of DA
effects without interference from dynamic assumptions. This makes it possible to isolate
and estimate investor preferences for the left and right sides of the distribution, relative
to the DA threshold, directly from cross-sectional option prices.

Empirically, we find compelling evidence that DA contributes meaningfully to explaining
option prices. For one-day options, the model reveals that investors tend to overweight
the right tail, opposite to standard DA preferences. This aligns with findings by Bryz-
galova et al. (2023), who show that retail traders dominate short-dated option volume
and seek upside exposure.

When we extend the analysis to the full surface of options, DA substantially improves
the model fit. We estimate three nested versions of the pricing kernel: (1) the bench-
mark model of CHJ, (2) a no-DA version that allows the price of return and variance
risk to follow flexible dynamics, and (3) a fully flexible version that includes DA. By pro-
gressively relaxing the restrictions across these models, we demonstrate the incremental
value of incorporating DA. In particular, DA enhances the model’s ability to capture the
shape of the implied volatility surface and improves the pricing of deep out-of-the-money
options. Overall, incorporating DA reduces the vega-weighted root mean squared error
(VWRMSE) by approximately 20%, with the majority of the improvement attributable
to the DA component. These results underscore the importance of modeling preferences
beyond return and variance, especially in capturing investor behavior across different re-
gions of the distribution.

We also uncover meaningful time variation in DA sensitivity. The inferred parameters
display rich dynamics over time and across maturities, consistent with changing macro-
financial conditions. The estimated time-variation of sensitivity to disappointment is
consistent with the findings of Schreindorfer and Sichert (2025). Pricing kernel estimates
show that negative stock market returns are significantly more painful to investors in low-
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volatility periods. Moreover, we document a term structure in DA aversion: shorter-dated
options exhibit opposite preference patterns than medium- to longer-term options. These
findings support the idea that investor horizons shape how DA manifests in market prices.

Our contributions are threefold. First, we introduce a reduced-form option pricing model
that embeds DA into a GARCH-based framework. Our model flexibly accommodates
various physical dynamics and features a pricing kernel with time-varying sensitivities to
the return, volatility, and DA through conditional parameters. This builds on Christof-
fersen et al. (2013) and connects to structural models such as Routledge and Zin (2010);
Bonomo et al. (2011) and Ang et al. (2005). A key advantage is the derivation of a
closed-form solution for one-day options, allowing for clean identification of investor pref-
erences directly from cross-sectional data. We extend the insights of structural models
such as Babiak (2024) and Schreindorfer (2020) by providing a reduced-form estimation
framework that allows the data to reveal the presence and intensity of DA. This empirical
approach complements their theoretical contributions and yields new insights into when
and how such preferences shape option prices.

Second, we allow the pricing kernel to transform Gaussian physical distributions into
skewed and truncated RN distributions. This departs from the standard practice of
using exponentially linear pricing kernels (Duffie et al., 2000), which typically preserve
distributional forms. Our specification, based on kinked utility functions, introduces dis-
continuities that break this symmetry. Despite these nonlinearities, we retain tractability
by deriving an analytical solution for one-day option prices. In line with Babaoğlu et al.
(2018), we show that non-trivial transformations of the physical distribution are essential
to improve option pricing accuracy. This feature enables us to distinguish how much of
the skewness in observed option prices arises from investor preferences rather than return
dynamics under the physical measure.

Third, our empirical results provide novel insights into how DA varies across time and
investor horizons. For one-day options, we find that investors overweight right-side out-
comes. This behavior contrasts with standard disappointment aversion and aligns with
the findings of Bryzgalova et al. (2023), who document speculative behavior among retail
traders in short-dated options. Similarly, Adams et al. (2024) find that, on the day of
expiration, customer order imbalances for out-of-the-money SPX call options are more
than double those for out-of-the-money put options. In contrast, medium-term investors
exhibit disappointment-averse behavior, with DA reducing the vega-weighted RMSE by
roughly 20%. These results demonstrate that preferences vary by investment horizon
and state, and that DA plays a central role in shaping RN distributions. Furthermore,
our framework contributes to the literature on higher-order risk preferences (Harvey and
Siddique, 2000; Ang et al., 2006; Feunou et al., 2013).

Our work is related to the large body of GARCH option pricing models that capture
time-varying volatility and non-normal return dynamics, including Heston and Nandi
(2000); Christoffersen and Jacobs (2004); Christoffersen et al. (2006) and Christoffersen
et al. (2010). While these models typically assume smooth, exponentially affine pric-
ing kernels, our approach explicitly incorporates DA into the pricing kernel through a
reduced-form yet flexible framework. Likewise, studies such as Bates and Craine (1999),
Maheu and McCurdy (2004), and Bégin et al. (2020) focus on jump risk, news shocks,
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or idiosyncratic volatility to explain risk premia but do not allow for preference-based
distortions. Compared to more recent approaches like Majewski et al. (2015) and Chorro
and Fanirisoa Zazaravaka (2022), which improve pricing accuracy through richer volatil-
ity or leverage dynamics, our model captures behavioral asymmetries through nonlinear
investor preferences. By leveraging closed-form solutions for one-day options, we can
isolate the DA contribution, providing a unique empirical window into how short- and
medium-horizon investors differ in risk preferences.

The remainder of the paper is structured as follows. Section 2 outlines the theoretical
framework, detailing the incorporation of DA into the RN measure. Section 3 describes
the empirical methodology, where Section 4 describes the data and estimation techniques.
Section 5 presents the results, comparing the performance between the nested models.
Finally, Section 6 concludes.

2 Preferences and disappointment aversion

Our pricing kernel is derived from an equilibrium, consumption-based setting with a rep-
resentative investor who has a rational DA utility function as introduced by Gul (1991).
The investor evaluates uncertain future payoffs with a kinked utility function that penal-
izes realizations falling below a reference point.

The recursive utility is given by:

Vt = (1− δ)At + δRt(Vt+1),

where At denotes current consumption, δ is the time discount factor, and Rt(Vt+1) is the
certainty equivalent of future utility.

Under DA, the certainty equivalent is implicitly defined by:

R1−γ − 1

1− γ
=

∫
V 1−γ − 1

1− γ
dF (V )−

(
1

α
− 1

)∫
V <R

(
R1−γ − V 1−γ

1− γ

)
dF (V ),

where γ is the relative risk aversion parameter, α ∈ (0, 1] is the DA parameter, and
F (V ) is the distribution of continuation utilities. When α = 1, the second integral van-
ishes, and preferences reduce to standard expected utility. When α < 1, outcomes below
the certainty equivalent R are weighted more heavily, reducing its value and reflecting a
penalty for disappointment.

The pricing kernel is derived as the marginal rate of substitution between consumption at
times t and t+1, adjusted for DA. Let Rt+1 be the gross return on a consumption-claiming
asset, then the one-period pricing kernel SDFt,t+1 is:

SDFt,t+1 = δ (δRt+1)
−γ · w(Rt+1), (1)

where w(Rt+1) captures the asymmetry in weighting gains versus losses:

w(Rt+1) =

{
1

Et[I(Rt+1<1/δ)+α I(Rt+1≥1/δ)]
if Rt+1 < 1/δ,

α
Et[I(Rt+1<1/δ)+α I(Rt+1≥1/δ)]

if Rt+1 ≥ 1/δ,
(2)
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where I(·) is the indicator function. Plugging (2) into (1), the stochastic discount factor
is compactly written as following:

SDFt,t+1 = δ (δRt+1)
−γ ·

[
I(Rt+1<1/δ)+α I(Rt+1≥1/δ)

Et[I(Rt+1<1/δ)+α I(Rt+1≥1/δ)]

]
= δ (δRt+1)

−γ ·
[

1+( 1
α
−1)I(Rt+1<1/δ)

1+( 1
α
−1)Et[I(Rt+1<1/δ)]

]
. (3)

This pricing kernel tilts the RN measure in favor of downside states, consistent with
evidence from option markets showing relatively high prices for crash protection. It
introduces a kink at the disappointment threshold, generating asymmetric pricing of
upside and downside risks. Notably, when α < 1, downside outcomes receive higher
weight in pricing, producing fatter left tails in the RN distribution.

2.1 A new reduced-form pricing kernel

The theoretical pricing kernel in equation (3), derived from DA preferences, serves as the
foundation for the following specification of our reduced-form pricing kernel, PKt+1:

PKt+1 =
P̃Kt+1

Et[P̃Kt+1]
, P̃Kt+1 = exp(γ1trt+1 + γ2tr

2
t+1) · (1 + γ3t · I[rt+1 < −κt]) , (4)

where rt+1 is the log-return, that is rt+1 ≡ lnRt+1.

Our specification mimics (3), but is more flexible. A straightforward comparison between
equations (3) and (4) enables us to ground our specification with the theory. Starting
with our reduced-form disappointment threshold, κt. We have κt ≡ log(δ), which links
our reduced-form disappointment threshold to the agent’s rate of time preference. How-
ever, in our empirical implementation, we treat κt as a flexible threshold chosen to best fit
the data. γ3t is our reduced-form DA parameter, indeed equating equations (3) and (4),
one can easily establish that γ3t ≡ 1

α
− 1. However, we depart from the assumption of

constant disappointment aversion and allow it to vary over time, an essential contribution
of this paper.

Equating equations (3) and (4), reveals that γ1t is the opposite of the relative risk aversion
parameter: γ1t ≡ −γ. However, we depart from the assumption of constant relative risk
aversion and instead allow γ1t to vary over time. Following Christoffersen et al. (2013),
we extend Equation (3) by including the squared log return, r2t+1, in our reduced-form
pricing kernel (4). The coefficient γ2t captures sensitivity to variation of squared returns
and, in the absence of DA, reflects the wedge between the conditional RN and physical
variances. A quadratic log-pricing kernel can be linked to an important property that all
admissible utility functions must have: non-increasing absolute risk aversion. As shown
by Kimball (1990), γ2t is closely associated with the concept of “relative prudence”, the
investor’s tendency to prepare or hedge in the face of uncertainty. This contrasts with
“risk aversion,” which reflects the extent to which an investor dislikes uncertainty and
seeks to avoid it.

Our reduced-form specification of the pricing kernel (4) departs from the exponentially
affine class in Duffie et al. (2000), because of the nonlinear indicator term, which in-
troduces a discontinuity at −κt. This discontinuity reflects the investor’s kinked utility
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response when returns fall below the disappointment threshold.Notably, our specification
nests several common benchmarks: Setting γ2t = γ3t = 0 recovers the logarithmic linear
pricing kernel in the GARCH option pricing model of Heston and Nandi (2000). The vast
majority of pricing kernel specifications in the GARCH option pricing literature corre-
spond to this case. Setting γ3t = 0 yields the smooth pricing kernel used in Christoffersen
et al. (2013), where return shocks affect prices in linear and quadratic terms. However,
in their specification, γ2t is inversely proportional to the physical variance, resulting in
a constant ratio between the physical and risk-neutral variance. Importantly, our model
allows the three preference components, risk aversion (γ1t), volatility aversion (γ2t) and
DA (γ3t), to vary over time in an unrestricted manner. This flexibility enables the pric-
ing kernel to generate a wider range of RN distributions that better align with observed
option prices.

A discontinuity in the pricing kernel might not be a desired property as two return
outcomes on both sides, and arbitrary closed, of the threshold (−κt) have potentially
very different discounting. One way to mitigate this is to approximate I[rt+1 < −κt] with
the following continuous function:

I[rt+1 < −κt] ≈ 1− Φ

(
rt+1 + κt

σ

)
− σ

rt+1 + κt
ϕ

(
rt+1 + κt

σ

)
,

where Φ(·) and ϕ(·) denote standard normal cdf and pdf, respectively, and σ > 0 is a
smoothing parameter. This approximation has been widely used in the term structure of
interest rate literature to model the link between the central bank target interest rate and
the shadow rate. As shown in Wu and Xia 2016, 1−Φ

(
s
σ

)
− σ

s
ϕ
(
s
σ

)
converges to I[s < 0]

as σ approaches 0. Our empirical investigation reveals no difference between using the
indicator function and its continuous approximation. We therefore focus on our pricing
kernel specification given in (4).

2.2 Preliminary evidence

Option data can provide insight into the key components that shape the pricing kernel.
Provided a sufficiently wide range of strike prices for a given time to expiration, Breeden
and Litzenberger (1978) show that the RN distribution can be recovered. By comparing
the RN distribution to a physical benchmark, one can infer the shape of the pricing kernel
and assess whether its features align with those predicted by our model, particularly in
terms of risk aversion, volatility aversion, and DA. This section documents these features
in the data and serves as a preliminary validation of the empirical relevance of the model
structure.

Using CBOE intraday option pricing data, we fit a smooth spline to the mid-prices of
put options across strike prices.1 The RN density for a given day and maturity is then
obtained by taking the second difference of the fitted put price curve across the integer
strike prices.

The physical distribution is generated by an EGARCH (2,2) model with a mean ARMA
(2,2) process, which captures key characteristics of financial return series such as volatility

1See Appendix A.5 for more details.
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clustering, fat tails, and asymmetric volatility responses to negative shocks.2 These mod-
els are also computationally convenient for simulating multi-horizon return distributions
(see, e.g., Bollerslev (1986) and Duffee (1995)). Given the specified stochastic process,
the ratio of the RN density to the physical density yields the pricing kernel. Figure 1
illustrates the resulting logarithmic pricing kernel using option prices from 2004 and 2021.

Figure 1: Pricing kernel extracted from option prices
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These figures display the log of the ratio between the RN and physical return densities, interpreted as the
log pricing kernel. The RN densities are inferred from CBOE option data using options with maturities
between 25 and 35 days, following Breeden and Litzenberger (1978) by applying a second difference
to a smooth spline fitted to put option prices. The physical densities are constructed by estimating
an EGARCH(2,2) with an in-mean ARMA(2,2) model on SPX returns and simulating the conditional
return distribution for the corresponding maturity. The simulated returns are binned into 50 equally sized
intervals to approximate the density. Return quantiles are standardized by the simulated distribution’s
standard deviation. For presentation, 1,000 pricing kernel observations are randomly sampled for each
year from 2004 to 2021, based on data collected each Wednesday.

The pricing kernel, defined as the log ratio of the RN and physical return densities, reveals
several distinct patterns when visualized across different years. One consistent feature is
the characteristic U-shape, which reflects the pricing kernel’s convexity in return space.
This motivates the inclusion of a squared return term, as in Christoffersen et al. (2013),
to account for the heightened sensitivity to tail events. Additionally, there is notable
variation in the shape and steepness of the pricing kernel over time, suggesting changes
in attitudes toward risk and asymmetries in market beliefs. While the left side of the
pricing kernel is often steeper, consistent with stronger pricing of downside risk, there is
also substantial variation in the right tail, which is sometimes surprisingly steeply upward

2Results are robust to using alternative specifications such as the standard GARCH(2,2) and GJR-
GARCH(2,2) models with ARMA(2,2) specification for the mean process.
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sloping. This asymmetry between negative and positive outcomes further motivates the
inclusion of the indicator function that captures DA.

To better understand the components driving the shape of the pricing kernel, we run daily
regressions of the pricing kernel at different quantiles on the components in Equation (4).
We take the logarithm of the empirical pricing kernel and approximate the nonlinear term
log(1 + γ3tI[rτi,t < −κt]) using a Taylor expansion. This yields the following regression
specification:

log(PKi) = β0 + β1r
∗
i + β2(r

∗
i )

2 + β3I[r∗i < −κ∗] + ϵi, (5)

where r∗i denotes the return quantile i standardized by the standard deviation of the
physical distribution for a given day, and I[r∗i < −κ∗] captures the presence of DA past
the standardized threshold −κ∗.

Figure 2: Regression coefficients pricing kernel

2005 2010 2015 2020

0
1

2
3

β 1

2005 2010 2015 2020

0.
0

0.
4

0.
8

β 2

2005 2010 2015 2020

0
2

4
6

β 3

2005 2010 2015 2020

0.
02

0.
08

di
ff 

R
2

These figures display the coefficient estimates from the regressions described in Equation (5). Each day,
we regress the logarithm of the empirical pricing kernel, extracted from SPX options with maturities
closest to 30 days, on a constant, the standardized return r∗i , its square r∗2i , and a DA indicator.
The estimated coefficients are averaged within each month and plotted. The fourth panel shows the
incremental explanatory power of the DA component, measured as the difference in R2 between the full
regression in Equation (5) and a restricted version that excludes the DA term. The physical densities are
constructed by estimating an EGARCH(2,2) model with an in-mean ARMA(2,2) specification on SPX
returns, and simulating the corresponding conditional return distribution. Simulated returns are grouped
into 50 equally sized intervals to approximate the density, and return quantiles are standardized by the
standard deviation of the simulated physical distribution. The RN densities are derived from CBOE
option data using contracts with closest to 30 day for that date, following Breeden and Litzenberger
(1978). The threshold −κ∗ = 0.

Figure 2 shows the monthly averaged daily coefficient estimates of β1, β2 and β3. First,
the coefficients on the linear and squared return terms (r∗ and r∗2) are positive in most
years, especially in more recent periods. This reinforces the characteristic U-shape of
the log pricing kernel. As seen in Table 8 in the Appendix, the squared return term
is almost always significant, consistent with Christoffersen et al. (2013), who emphasize
that investors respond not just to the direction but also to the magnitude of returns.
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The DA indicator is positive over nearly the whole time period, indicating that downside
events below the disappointment threshold are systematically priced more aggressively.
The magnitude of the DA coefficient varies notably across years, with particularly el-
evated levels in 2007 and 2011 years associated with heightened macro-financial stress
during the onset of the global financial crisis and the euro area sovereign debt crisis, re-
spectively. The strength of the DA effect in these periods suggests that investors placed
substantial weight on downside risk beyond what is captured by return and volatility
alone. Figure 16 in Appendix A.7 shows the corresponding t-statistics of the daily re-
gression. They show that even in relatively calm periods, the DA coefficient remains
statistically significant, pointing to a persistent premium on negative outcomes. This
robustness indicates that DA is not merely episodic, but a important component of the
pricing kernel across a wide range of market conditions.

The last panel of the figure displays the increase in adjusted R2 from including the DA
component, measured relative to a restricted regression that omits the indicator function.
The contribution of the DA term varies between 2% and 10%, indicating a meaningful
and time-varying role in shaping of the pricing kernel. Given that the average R2 of the
restricted model is around 60%, this improvement is substantial at times.3

3 Model

To evaluate the implications of DA for option pricing, we first specify the data generation
process for asset returns under the physical probability measure.

3.1 Dynamic under the physical probability measure

We break down the log returns of the underlying asset as following:

rt+1 = ln

(
St+1

St

)
= et +

√
htzt+1, (6)

where zt+1 ∼P N (0, 1) are i.i.d. standard normal shocks under the physical probability
measure (which we denote by P). Hence ht is the one-period ahead conditional variance
and et the one-period ahead conditional mean under the physical probability measure P,
that is:

et = EP
t [rt+1]

ht = EP
t

[
(rt+1 − et)

2] .
Both et and ht vary over time, and our framework supports any GARCH-type specification
for et and ht: that is, innovations in et+1 and ht+1 are functions of zt+1.

3.2 RN distribution

Given the physical dynamic of log-return, defined by (6), and the pricing kernel in Equa-
tion (4), we now derive the implied distribution under the RN measure (which we denote

3Figure 15 in Appendix A.7 presents similar results based on a nonlinear specification, where an
additional parameter is introduced for the squared return term, that is, (r∗i − a)2. Furthermore, Table 8
in Appendix A.6 reports the results of annual regressions that pool daily data by year and include
time-fixed effects to account for temporal variation.
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by Q).

The starting point is the expected value of the stochastic discount factor P̃Kt+1 under
P. We establish that:

EP
t

[
P̃Kt+1

]
= EP

t

[
exp

(
γ1trt+1 + γ2tr

2
t+1

)]
+ γ3tE

P
t

[
exp

(
γ1trt+1 + γ2tr

2
t+1

)
1[rt+1<−κt]

]
= (1 + γ3tΦ (Ct))E

P
t

[
exp

(
γ1trt+1 + γ2tr

2
t+1

)]
= (1 + γ3tΦ (Ct))

1√
1− 2htγ2t

exp

(
2γ2te

2
t + 2γ1tet + htγ

2
1t

2 (1− 2γ2tht)

)
.

To characterize the distribution of rt+1 under Q, we compute the moment generating
function (MGF) under Q. We show in the appendix that:

EQ
t [exp (urt+1)] = EP

t [PKt+1 exp (urt+1)] =
EP

t

[
P̃Kt+1 exp (urt+1)

]
EP

t

[
P̃Kt+1

]
=

1 + γ3tΦ
(
Ct −

√
h̄tu
)

1 + γ3tΦ (Ct)

 exp

(
a1tu+

h̄t
2
u2
)
, (7)

where

h̄t ≡
ht

1− 2htγ2t
, a1t =

(
γ1t +

et
ht

)
h̄t, Ct = −κt + a1t√

h̄t
. (8)

At this stage few important remarks can be made. Firstly, setting γ3t = 0 implies
that rt+1 ∼Q N (a1t, h̄t). Hence a1t and h̄t are respectively the conditional risk-neutral
expectation and variance of stock return in a world where DA is absent in the discounting
factor. In the presence of DA, the risk-neutral distribution of rt+1 is no longer Gaussian. It
displays deviations from normality, the extent of which depends on the strength of investor
disappointment aversion, γ3t, and the location of the disappointment threshold, κt. One
obvious implication is that the risk-neutral skewness is different from zero. Beside, there
are subtle deviations between the risk-neutral mean and variances and a1t and h̄t. These
deviations are function of the size of investor DA, γ3t, and the disappointment threshold,
κt. Given that we have derived the closed-form risk-neutral MGF in Equation (7), we
can compute derivatives at any desired order to study the effect of DA on risk-neutral
moments. In Appendix A.2 we have computed analytically the first, second, third, and
fourth RN moments. We use these to illustrate the flexibility of the pricing kernel in
shaping the distribution of returns.

RN distribution: In between DA and the physical world

To better understand the effect of DA in our model, it is instructive to decompose the
pricing kernel into two components: a standard RN transformation and an adjustment
for DA. We implement this by introducing an intermediate probability measure, denoted
Qnd, representing a RN world in which investor preferences are driven solely by tradi-
tional risk and volatility aversion, i.e., without DA.
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The transformation from the physical measure to this baseline RN measure Qnd is done
using the following pricing kernel:

PKP→Qnd

t+1 =
exp

(
γ1trt+1 + γ2tr

2
t+1

)
EP

t

[
exp

(
γ1trt+1 + γ2tr2t+1

)] . (9)

This kernel resembles the one used in Christoffersen et al. (2013), and preserve the Gaus-
sian distribution under the Qnd probability measure, indeed we have

EQnd

t [exp (urt+1)] = EP
t

[
PKP→Qnd

t+1 exp (urt+1)
]

= exp

(
a1tu+

h̄t
2
u2
)
,

which implies that under Qnd the log return rt+1 is normally distributed with mean a1,t
and variance h̄t. Hence,

γ2t =
1

2

(
1

V arPt [rt+1]
− 1

V arQ
nd

t [rt+1]

)

γ1t =
EQnd

t [rt+1]

V arQ
nd

t [rt+1]
− EP

t [rt+1]

V arPt [rt+1]
,

implying that in the absence of DA, γ2t measures the precision (inverse of the variance)
spread between the physical and the RN distributions, while γ1t measures the mean-to-
variance-ratio spread between the risk-neutral and physical distributions.

DA enters as a second transformation, modifying the Qnd-distribution by applying an
additional tilt that depends on whether the return rt+1 falls below a DA threshold −κt.
Specifically, the adjustment from Qnd to the final RN measure Q is governed by:

PKQnd→Q
t+1 =

1 + γ3t · I[rt+1 < −κt]
1 + γ3t · EQnd

t [I[rt+1 < −κt]]
. (10)

This kernel amplifies the weight placed on downside realizations when γ3t > 0, effectively
increasing the left-side density under Q relative to Qnd.

The MGF of rt+1 under Q can thus be expressed as follows:

EQ
t [exp(urt+1)] = EQnd

t

[
PKQnd→Q

t+1 exp(urt+1)
]

=
EQnd

t [exp (urt+1)] + γ3tE
Qnd

t [exp (urt+1) I[rt+1 < −κt]]
1 + γ3tE

Qnd

t [I[rt+1 < −κt]]
. (11)

This decomposition provides a transparent interpretation of DA’s contribution to the
pricing kernel. Indeed, using (11), we can easily establish that

γ3t =
EQ

t [I[rt+1 < −κt]]− EQnd

t [I[rt+1 < −κt]]
EQnd

t [I[rt+1 < −κt]]EQ
t [I[rt+1 > −κt]]

,

hence the parameter γ3t captures the additional distortion in the risk-neutral distribu-
tion, reallocating probability mass beyond what is explained by standard risk aversion
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and volatility compensation. When γ3t > 0, the model shifts more probability mass to the
left side under Q, increasing the value of downside protection. In this way, DA provides
an intuitive and tractable channel through which the model captures observed option
pricing asymmetries.

Through some straightforward math we show that EQnd

t [I[rt+1 < −κt]] = Φ(Ct), and
Φ(Ct) is the Qnd probability of disappointment of the investor. There is a mapping
between κt and Ct, and using Equation (8) we can express κt as a function of Ct:

−κt = Ct

√
V arQ

nd

t [rt+1] + EQnd

t [rt+1] ,

hence, Ct can thus be interpreted as the number of standard deviation of the Qnd distri-
bution below which the investor is disappointed. For that reason, and for convenience,
all our discussions throughout the rest of the paper are done by setting and varying Ct,
in lieu of κt.

RN distribution: Mixing a Gaussian with truncated Gaussian

An alternative and complementary interpretation of the pricing kernel is to view the
implied RN distribution as a mixture of two Gaussian components: a full Gaussian dis-
tribution and a truncated Gaussian, with their relative weights governed by the DA
parameter γ3t.

Let r̄t+1 denotes an hypothetical logarithmic return such that r̄t+1 ∼Q N (a1,t, h̄t). Then,
the MGF of rt+1 under Q can be expressed as:

EQ
t [exp(urt+1)] =

{
ρt · gQlt (u) + (1− ρt) · gQt (u), if γ3t > 0,

ρt · gQut(u) + (1− ρt) · gQt (u), if γ3t ≤ 0,

where gQt (u) ≡ EQ
t [exp(ur̄t+1)] is the MGF of Gaussian distribution with mean a1t and

variance h̄t. Furthermore, gQlt (u) ≡ EQ
t [exp(ur̄t+1) | r̄t+1 ≤ −κt] is the MGF of the left

side truncated normal distribution and gQut(u) ≡ EQ
t [exp(ur̄t+1) | r̄t+1 > −κt] is the MGF

of the right side truncated normal distribution. The weight ρt determines how much mass
is shifted toward the truncated region and is defined as:

ρt =


γ3tΦ(Ct)

1 + γ3tΦ(Ct)
, if γ3t > 0,

−γ3t (1− Φ(Ct))

1 + γ3tΦ(Ct)
, if γ3t ≤ 0.

(12)

First, observe that when γ3t = 0, the pricing kernel reduces to its standard Gaussian
form. The left panels of Figure 3 illustrates how changes in γ2t influence the shape of the
risk-neutral distribution under this baseline. The upper left panel shows the densities for
three values of γ2t, while the lower panel highlights the displacement of the mass relative
to the reference case γ2t = 0. As γ2t increases, the distribution becomes more dispersed,
with the probability mass shifting symmetrically toward both tails, reflecting an increase
in RN variance. In contrast, negative values of γ2t compress the distribution, concentrat-
ing the probability around the center and reducing the likelihood of extreme outcomes.
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While γ2t governs symmetric variation in dispersion, γ3t introduces asymmetric adjust-
ments in the RN distribution. The central panel of Figure 3 further illustrates the effect
of varying γ3t, holding γ2t = 0 and fixing the RN variance to one. When γ3t > 0, the mass
is shifted to the left side of Ct, increasing the probability of negative outcomes under the
RN measure. In contrast, for γ3t < 0, the distribution flattens in the left tail, reallocating
mass toward the center. Since the x-axis displays the demeaned, standardized quantile,
the shift in the discontinuity observed between γ3t = −0.5 and γ3t = 0.5 in the lower
panel indicates that the first moment of the RN distribution also changes.

The right panel of Figure 3 illustrates the role of t in shaping the RN distribution, shown
here for the case Ct = 0. While γ3t governs the intensity of the shift in the probabilities
of the left side, t plays an equally important role in determining where this shift occurs.
Its most direct effect is to control the location of the discontinuity in the RN density
function. In addition, κt influences how sensitive the RN distribution is to changes in γ3t,
as seen by its effect on the weight ρ in (12). As a result, the discontinuity in the density
becomes more pronounced as κt approaches zero.

Figure 3: RN density for γ2t and γ3t
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(a) RN density γ2t
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(b) RN density γ3t where Ct = −1.5
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(c) RN density γ3t where Ct = 0

The figure depicts the RN densities for different values of γ2t and γ3t. In the left two panels, we set
γ2t ∈ {−1000, 0, 1000} with γ3t = 0. In the middle and right panels, we fix γ3t ∈ {−0.5, 0, 0.5} with
Ct = 1.5 and Ct = 0, respectively. Both the middle and right panels are demeaned, normalizing the first
moment to zero. We use the mean fitted values from the physical process for ht and et, which are inputs
to at. For the right panel, we additionally set γ2t = 0 and fix the RN variance to one. The lower panels
depict the change in density relative to the γ2t = 0 or γ3t = 0.

RN moments

Figure 4 provides a graphical representation of the RN moments, derived in Appendix A.2,
as a function of γ3t and Ct. The RN variance is normalized to one to facilitate interpreta-
tion of higher-order moments. For Ct = −1.5, increasing γ3t shifts the probability mass
to the left tail of the distribution, leading to a decline at the first moment. The second
row of the figure shows h̄t, the RN variance in a world without DA. Because the thresh-
old is located in the left tail, γ3t > 0 increases the RN variance relative to the no-DA
baseline. Consequently, the third moment becomes increasingly negative, reflecting the
asymmetric accumulation of mass in the left tail. Excess kurtosis also rises with higher
values of γ3t, capturing the fattening of both tails induced by the kink in the pricing kernel.

13



For Ct = 0, the behavior of the moments is more nuanced. In particular, the RN variance
decreases relative to the no-DA RN variance, h̄t, as γ3t deviates from zero, contrary to the
case with Ct = −1.5. The skewness pattern also differs. At first glance, the changes in
skewness appears counterintuitive: for γ3t > 0, the distribution exhibits positive skewness
despite the fact that DA penalizes negative outcomes. However, it is important to note
that the first moment also changes concurrently, effectively shifting the RN distribution
to the right when computing central moments. This shift places more mass in the right
tail, as illustrated by the red line in the lower right panel of Figure 3. Although the
resulting apparent change in the right tail is modest, it carries significant weight in the
higher-order moments. This asymmetry turns the change in third moment positive, as
the influence of the right tail dominates the initial accumulation of mass on the left near
the center of the distribution.

Finally, for Ct = 1.5, increasing γ3t causes more mass to shift toward the right side of the
distribution, raising the first moment. Despite this directional shift, the skewness remains
close to the levels observed when the threshold lies in the left tail, suggesting that the
mass is displaced in a fairly symmetric way around the mean. In contrast, excess kurtosis
decreases with higher γ3t, moving opposite to the pattern observed with Ct = −1.5.

To summarize, the relationship between skewness and DA at different threshold locations,
Figure 5 plots the skewness of the RN distribution for two fixed values of γ3t ∈ {−0.4, 0.4},
as shown in Figure 4. The difference between the two lines can be interpreted as the
slope of the skewness as a function of γ3t. Skewness is downward sloped, as is the case
for Ct = −1.5, when the threshold is placed more than one standard deviation away from
the center of the distribution. These figures will help guide the interpretation of the RN
moments extracted from the estimated model.

Overall, this interpretation shows that the model-implied RN return distribution is highly
flexible. It can accommodate both positive and negative skewness, even when the physical
return distribution is conditionally Gaussian. This flexibility allows for a disciplined
identification of the influence of DA by separating the impact of the physical return
dynamics from investor preferences.

3.3 No-arbitrage condition

In principle, the pricing kernel includes three free preference parameters: γ1t, γ2t, and γ3t.
The no-arbitrage condition, EQ[ert+1 ] = erf , imposes a restriction on their joint values.
This implies that only two of the three parameters are free. For tractability, we opt to
pin down γ3t as a function of the other two parameters, γ1t, γ2t:

γ3t =
exp

(
h̄t(γ̄1t − γ1t)

)
− 1

Φ
(
Ct −

√
h̄t

)
− Φ(Ct) · exp

(
h̄t(γ̄1t − γ1t)

) ,
where

γ̄1t =
rf
h̄t

− et
ht

− 1

2
. (13)

In addition, to ensure a nonnegative pricing kernel at any given time t, it must be the
case that γ3t > −1, which implies a bound on γ1t.
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Figure 4: RN moments vs γ3t
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The figure depicts the RN moments as a function of γ3t, ranging from −0.4 to 0.7, with the second RN
moment normalized to one. The top panel shows the first moment of the RN distribution corrected for
the no-DA risk premium. The second panel plots h̄. The third panel displays the skewness of the RN
distribution, and the bottom panel shows its excess kurtosis. We use the average fitted values for ht and
et from the physical process as inputs. Additionally, we set Ct ∈ {−1.5, 0, 1.5} for the different lines in
each panel.

Indeed, we show in the Appendix that γ3t > −1 if and only if

γ̂l1t < γ1t − γ̄1t < γ̂u1t (14)

where

γ̂l1t ≡
1

h̄t
ln

(
Φ(−Ct)

Φ(−Ct +
√
h̄t)

)
, γ̂u1t ≡

1

h̄t
ln

(
Φ(Ct)

Φ(Ct −
√
h̄t)

)
.

To ensure that (14) holds, we re-parameterize γ1t by expressing it as a function of a free
parameter which we denote by γ̃1t

γ1t = γ̄1t + γ̂l1tγ̂
u
1t

(
exp (−γ̃1t)− 1

γ̂u1t exp (−γ̃1t)− γ̂l1t

)
.

Note that γ̃1t = 0 is equivalent to γ3t = 0 and γ1t = γ̄1t, and thus γ̃1t can be interpreted
as a restriction-free disappointment aversion parameter.

3.4 Model implied one-period option price

Most existing approaches rely on a log-linear pricing kernel or restrict the pricing kernel to
simple transformations, such as shifts in the mean or adjustments to the second moment,
see, e.g., Figure 3. Departing from these conventions introduces significant challenges, as
the resulting nonlinearity makes it difficult to derive the RN distribution and complicates
the fast evaluation of option values. Despite these complexities, we show that it is still
possible to obtain a closed-form expression for the model-implied price of a one-day
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Figure 5: Skewness vs Ct
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This figure depicts the skewness of the RN distribution for different values of the DA threshold Ct,
conditional on a given γ3t. The gap between the red and blue lines illustrates the sensitivity of skewness
to changes in Ct, corresponding to the slope of the skewness curve with respect to the DA threshold in
Figure 4.

option. Leveraging the GARCH dynamics of the physical return process and the non-
smooth structure of the pricing kernel, we derive the call option price conditional on the
model parameters.4

Cm (et, ht, γ1t, γ2t) =

e−rf (1 + γ3tΦ (Ct))
−1
[
Φ
(√

h̄t −Dt

)
S̃t − Φ (−Dt)K

]
+

γ̃3t

[(
Φ
(
Ct −

√
h̄t

)
− Φ

(
Dt −

√
h̄t

))
S̃t − (Φ (Ct)− Φ (Dt))K

]
(15)

where

Dt ≡
ln
(

K
St

)
− a1,t√
h̄t

, S̃t ≡ e−h̄t(2a1,t+h̄t)St and γ̃3t ≡ γ3t1[ln( K
St

)
<−κt

].
The closed form formula cleanly separates into a no DA part and DA part. The first part
resembles the Black and Scholes (1973) option pricing model. The departure from the
classical approach is illustrated in Figure 6. We plot the no DA option price relative to
the DA option price for different levels of the moneyness of the option. One can clearly
see that for γ3t > 0, the options that insure against left tail events are more expensive
relative to the non-DA counterpart. The opposite holds for γ3t < 0, as seen from the
black solid line. Given that the γ’s are allowed to vary over time, this DA framework is
able to facilitate occasions where the sign might switch.

3.5 Dynamics

To obtain the multi-step ahead distribution, one must specify the dynamics governing
both the physical and RN processes. As noted previously, any form of GARCH specifi-
cation for ht and et is admissible within our framework. For our main specification, we
adopt the model of Heston and Nandi (2000), which has become the standard reference
for GARCH-based option pricing. For robustness, we provide estimates with EGARCH
dynamics.

4See Appendix A.3 for a detailed derivation.
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Figure 6: Model implied option price vs γ3t
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The figure shows the model implied option price relative to the option price with no DA, i.e., C∗
m. Cm is

the model implied option price with the γ3t set to -0.5 and 1 for the solid and dashed line, respectively.
The values for ht and et we take the mean of the fitted values from the physical process. Furthermore,
h̄t is set to 1.05 times the mean of ht and Ct = −1.5.

3.5.1 Physical dynamic parameters

In our empirical implementation the variance evolves according to:

ht+1 = β0 + β1ht + β2

(
zt+1 − θ

√
ht

)2
.

This GARCH structure captures volatility clustering through the autoregressive term and
incorporates the leverage effect via the asymmetric shock term. An important feature of
the Heston and Nandi (2000) setup is its compatibility with closed-form option pricing
under log-linear pricing kernels. The model includes a risk premium in the conditional
mean return and has been extended by Christoffersen et al. (2013) to also allow for a
premium on return variance.

We further enrich the model by extending the specification of the conditional mean.
First we decompose et in two components, et = ēt + ẽt, where ēt is the expected return
specification postulated in existing GARCH-option pricing papers: ēt ≡ rf +λht− ht

2
.We

depart from this commonly used expected-return, assuming potential persistent deviation
between et and ēt, that is ẽt = et − ēt is a mean-reverting AR(1) process:

ẽt+1 = α0 + α1ẽt + α2

√
htzt+1.

This structure reflects empirical evidence of the continuation of returns after large shocks
(see Calvet and Fisher, 2007) and allows the model to better capture the interplay
between volatility and expected returns.

3.5.2 Pricing Kernel parameters

Our framework is flexible and compatible with any type of GARCH-style dynamic for
both γ̃1t and γ2t. We assume that γ̃1t follows a simple AR(1) process, that is:

γ̃1t+1 = ᾱ0 + ᾱ1γ̃1t + ᾱ2zt+1. (16)

17



Furthermore, note that γ2t captures the wedge between the physical conditional variance
ht and the no-DA risk-neutral variance h̄t, defined as

γ2t =
1

2

(
1

ht
− 1

h̄t

)
.

As a result, specifying a dynamic process for γ2t is equivalent to specifying a dynamic
process for h̄t:

h̄t+1 = β̄0 + β̄1h̄t + β̄2

(
zt+1 − θ̄

√
h̄t

)2
, (17)

which mimics that of ht as they are both variances.

3.5.3 Benchmark models

To evaluate the contribution of DA to option pricing, we estimate and compare three
nested specifications of the pricing kernel. All models share a common physical process
but have restrictions on the pricing kernel. The baseline model, CHJ, corresponds to the
framework in Christoffersen et al. (2013), where there is no disappointment aversion (γ3t =
0) and the risk-neutral variance (h̄t) is a fixed proportion of the physical variance (ht), that

is h̄t =
(
θ
θ̄

)2
ht. The second specification, no DA, relaxes this proportionality by allowing

a separate dynamic process for the risk-neutral variance, though it still excludes DA by
setting γ3t = 0. Finally, the most flexible model, DA, introduces time variation in both the
linear and quadratic pricing kernel components and allows for disappointment aversion
through a non-zero, time-varying γ3t. This fully unrestricted specification captures the
asymmetry and tail behavior in risk-neutral distributions that simpler models may miss.
We summarize the different restriction imposed by each of these model in Table 1.

Table 1: Pricing Kernel Restrictions

Model ᾱ0 ᾱ1 ᾱ2 β̄0 β̄1 β̄2 θ̄

CHJ 0 0 0
(
θ
θ̄

)2
β0 β1

(
θ
θ̄

)2
β2 NR

no DA 0 0 0 NR NR NR NR

DA NR NR NR NR NR NR NR

This table reports the pricing kernel parameter restrictions for the different models. NR indicates that
there is no restriction.

3.5.4 Multi-period dynamics

Due to the non-affine nature of the RN dynamics implied by DA, closed-form expression
for option prices with maturity higher than one are not available. Consequently, option
values must be computed through simulation.

The first approach simulates returns directly under the full RN measure Q, which in-
corporates DA at each horizon. This involves sampling from a mixture of Gaussian
and truncated Gaussian distributions, with time-varying mixture weights. Although this
method is fully aligned with the theoretical structure of the model, it is computationally
demanding and less tractable, particularly when estimating model parameters.
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A more efficient alternative is to simulate returns under the no-DA RN measure Qnd,
where the dynamics are Gaussian. In this two-step approach, returns are generated un-
der Qnd and then adjusted path-by-path using the pure DA pricing kernel described in
Equation (10). This strategy avoids mixture sampling and is both computationally effi-
cient and numerically stable.

Finally, a third method simulates returns under the physical measure P, applying the
full pricing kernel to reweigh simulated paths. While conceptually straightforward, this
method tends to suffer from numerical instability, as the pricing kernel features nonlinear
transformations that can vary substantially across both time and simulation paths.

The computational challenges posed by simulating directly under Q or reweighting un-
der P motivated the development of a more computationally tractable alternative. The
second approach, via Qnd, offers a favorable balance between numerical stability and
consistency with the model’s structure, and is the method we adopt in this paper. Ap-
pendix A.4 provides full implementation details for all three simulation methods.

3.5.5 Model implied term structures

Figure 7 depicts the average wedge between the physical and RN variance and skewness
across the term structure. The top-left panel shows that the behavior of the variance
wedge varies by threshold. For Ct = −1.5, the wedge increases with γ3t, highlighting
the growing contribution of DA to RN variance. For Ct = 0, the wedge increases when
γ3t lies outside the approximate range [−0.2, 0]. This is consistent with Figure 3, which
shows that the variance in the no-DA case is elevated whenever γ3t ̸= 0.5 The pattern
for the slope of the wedge is very similar to the average wedge over the term structure.

The bottom-left panel of Figure 7 presents the skewness wedge. In most cases, the wedge
is positive for values of γ3t. For Ct = 0, the relationship with γ3t exhibits an S-shape
around γ3t close to zero, however with RN skewness exceeding physical skewness at both
ends of the γ3t range. For Ct = −1.5, the wedge increases with γ3t, even though the
one-period-ahead RN skewness is lower than the physical skewness for all values of γ3t. A
similar pattern appears in the bottom-right panel, which shows the slope of the skewness
wedge. These results highlight the complexity of DA’s influence on the distribution of
returns over longer horizons.

4 Estimation and data

4.1 Estimation strategy

To estimate the structural parameters of our model, we follow the joint likelihood estima-
tion approach, as in Christoffersen et al. (2013). This methodology combines information
from both time-series returns and the cross-section of option prices, ensuring that the
estimated parameters jointly reflect the physical and RN distributions.

5Figure 17 in the Appendix confirms that the steep U-shape is primarily driven by the difference
between the DA and no-DA models, rather than by the indirect effect of γ3t on γ1t.
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Figure 7: Term structure RN densities
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(b) Difference in slope

The figure depicts the wedge between the standard deviation and skewness of the RN and physical
distributions over 180-day terms as a function of γ3t. For this exercise γ2t and γ3t are constant, i.e.,
β̄0 = ψβ0, β̄1 = β1, β̄2 = ψβ2, θ̄ = θ/

√
ψ, ᾱ1 = 0 and ᾱ2 = 0. The left panels show the average wedge

across terms, while the right panels display the slope, measured as the difference between the 180-day
and 1-day wedges. To simulate the physical distribution, we use an EGARCH(2,2)-in-mean(2,2) model,
and the RN distribution is implied by our DA model. The results are shown for three different values of
Ct = {−1.5, 0, 1.5}.

We specify a joint likelihood function composed of two components: a return likelihood
based on the daily return distribution under the physical measure P and an option like-
lihood based on the observed market prices of options, evaluated under the RN measure
Q using our pricing kernel.

The conditional return density under P is normal:

f(rt|Ft− 1) =
1√
2πht

exp

(
−(rt − et)

2

2ht

)
,

where et and ht are the conditional mean and variance specified in Section 3.5. The
log-likelihood for returns is:

logLR ∝ −1

2

T∑
t=1

{
log ht +

(rt − et)
2

ht

}
.

For the option likelihood, we define vega-weighted pricing errors for each option i:

εi =
CMkt

i − CMod
i

BSVMkt
i

,

where CMkt
i is the market price, CMod

i is the model-implied price, and BSVMkt
i is the

Black-Scholes vega computed at the market-implied volatility. As discussed by Trolle
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and Schwartz (2009), the normalization is very similar in value to the implied volatility
but does not need a complex transformation of the model price, which has to be repeat-
edly calculated in optimization.

Assuming εi ∼ N (0, σ2
ε) and concentrating out σ2

ε with its sample counterpart σ̂2
ε =

1
N

∑
i ε

2
i , the log-likelihood from option prices becomes:

logLO ∝ −N
2
log

(
1

N

N∑
i=1

ε2i

)
.

The full parameter set Θ includes all parameters governing the physical dynamics, the
pricing kernel, and the evolution of time-varying preference parameters. The full joint
likelihood is maximized:

Θ̂ = argmax
Θ

{logLR(Θ) + logLO(Θ)} .

This joint estimation approach ensures that the inferred parameters rationalize both
return dynamics and option prices under a unified pricing kernel. Moreover, it allows
for assessing the contribution of DA preferences to option valuation in a statistically
disciplined manner.

Data

To estimate the model, we use data on S&P 500 options from OptionMetrics, covering the
period from January 1, 1996, to December 31, 2021. Consistent with previous studies and
to ensure computational feasibility, we use option prices from Wednesdays to estimate
models based on longer-dated options. For each trading day, we select the six contracts
with the highest trading volume for each available maturity. For the one-day-to-maturity
option analysis, we use data from all weekdays. Since our analysis is conducted using
call prices, we employ put-call parity to convert put prices into equivalent call prices at
a given strike. To estimate the parameters of the physical return dynamics, we use the
S&P 500 index level from the OptionMetrics dataset. Summary statistics for the options
and return data are reported in Table 2.

Table 2 panel (a) shows the high annualized return for our sample period 2000 and 2010s.
Furthermore, we also see that the typical negative skew that we observe in the returns for
the S&P 500 is present in our sample period. Panel (b) shows the descriptive statistics
by τ and panel (c) by moneyness. The contracts are relatively evenly distributed over
τ . The distribution of contracts over the strike is tilted slightly towards the out of the
money call options with M > 1.06.

5 Results

We divide our empirical investigation into two part: the pricing of one-day options and
the pricing of options with maturity higher than one day.
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Table 2: Returns and option data
Mean Standard deviation Skewness Kurtosis
0.114 0.233 -0.413 13.499

(a) SPX return statistics
τ ≤ 30 30 < τ ≤ 60 60 < τ ≤ 90 90 < τ ≤ 120 120 < τ ≤ 180 τ > 180 All

# of Contracts 15636 19068 11604 8388 13428 0 71136
Average IV % 20.88 21.51 22.74 23.21 22.82 22.11
Average price 155.35 173.43 196.33 252.67 288.76 208.04
Average Vega 139.20 169.21 213.21 266.05 338.01 213.07

(b) Option statistics by maturity
M ≤ 0.96 0.96 < M ≤ 0.98 0.98 < M ≤ 1.02 1.02 < M ≤ 1.04 1.04 < M ≤ 1.06 M > 1.06 All

# of Contracts 10437 5698 15326 5947 5335 28393 71136
Average IV % 16.28 13.57 15.31 17.76 19.50 31.04 22.11
Average price 12.22 20.93 48.07 90.49 126.17 443.92 208.04
Average Vega 186.90 257.54 306.94 263.05 238.86 147.78 213.07

(c) Option statistics by moneyness

This table presents summary statistics for the dataset used in the analysis. Panel (a) reports the mean,
standard deviation, skewness, and kurtosis of the log return distribution. Panel (b) provides option-level
statistics across moneyness buckets, including the number of contracts, average implied volatility, average
option price, and average Black-Scholes vega. Panel (c) presents the same set of statistics, but grouped
by maturity.

Table 3: Available options

M ≤ 0.96 0.96 < M ≤ 0.98 0.98 < M ≤ 1.02 1.02 < M ≤ 1.04 1.04 < M ≤ 1.06 M > 1.06
τ ≤ 30 666 1555 4955 1780 1420 2238

30 < τ ≤ 60 2055 1713 4245 1745 1644 4518
60 < τ ≤ 90 1773 770 2451 849 745 3322

90 < τ ≤ 120 1415 500 1348 542 510 2490
120 < τ ≤ 180 2778 736 1669 734 698 4269

This table reports the number of option contracts used in the estimation, categorized by time-to-maturity
and moneyness. The sample period spans from January 1, 1996, to December 31, 2021.

5.1 One-day options: Isolating disappointment aversion

To measure disappointment aversion in its purest form, we analyze one-day options.
These ultra-short maturities allow us to sidestep assumptions about the dynamics of the
physical and risk-neutral processes over time. Moreover, Equation (15) provides a direct
evaluation of the option price. This enabling direct estimation of the pricing kernel pa-
rameters from cross-sectional data, provided a sufficient number of strikes are available
for a given day. We compare two specifications: a baseline model without DA (γ3t = 0),
following Christoffersen et al. (2013), and the model that includes the DA component.
Figure 8 presents the resulting time series of parameter estimates, alongside the pricing
errors for the no-DA and DA model.

The first three panels display the estimated values of γ1t, γ2t, and γ3t. The DA model
exhibits greater volatility in γ1t, including some large negative realizations. γ2t is mainly
negative and comparable across models. Interestingly, the estimated γ3t values are mostly
negative, with occasional sharp positive spikes. Negative γ3t implies that, rather than ex-
hibiting DA, the left side of the RN distribution receives less weight, effectively capturing
a preference for positive outcomes. This pattern is consistent with empirical findings by
Bryzgalova et al. (2023), who document that retail investors, responsible for around 60%
of option trading volume, primarily trade short-dated, at-the-money call options. These
findings align with negative values of γ3t and support the view that, rather than addi-
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tionally penalizing negative returns, market prices exhibit a skew toward gain-seeking on
the right side of the distribution.

The fourth panel shows the pricing errors, measured as (CMkt
i − CMod

i )/CMkt
i . Across

most days, the DA model yields lower errors than the no-DA benchmark. These findings
underscore the empirical value of incorporating DA, or its inverse, in shaping the RN
distribution, even at the shortest horizons.

Figure 8: Estimates for one-day options
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These figures display the daily estimates of γ1t, γ2t, and γ3t, obtained from one-day option data using
Equation (15). Parameters are estimated separately under the no-DA and DA specifications. The first
three panels present the time series of γ1t, γ2t, and γ3t, respectively. The fourth panel plots the root
mean squared pricing error, calculated from (CMkt

i − CMod
i )/CMkt

i , over time. In each panel, the black
line corresponds to the no-DA model, while the red line reflects estimates under the DA specification.

Figure 9 displays the difference in mean RMSE between the DA model and the no-DA
benchmark across a range of Ct values from −2 to 2. The resulting curve exhibits an
inverse U-shape, with the largest reduction in pricing error occurring when Ct is near
zero. This suggests that the improvement in fit provided by DA is most pronounced
when the threshold for disappointment closely aligns with the center of the return distri-
bution. At more extreme values of Ct, either deep in the left or right tail, the DA model
offers less additional explanatory power over the benchmark. The result reinforces the
interpretation that disappointment aversion is most powerful when the reference point
for disappointment lies close to the current level, supporting the canonical assumption
that losses are evaluated relative to a zero or slightly positive return.
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Figure 9: One-day options: DA threshold versus fit
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This figure shows the difference in the mean RMSE between the no-DA and DA models as a function
of the DA threshold Ct. The RMSE is computed as (CMkt

i −CMod
i )/CMkt

i , and then averaged across all
dates.

5.2 Parameter estimates for longer horizons options

We now turn our attention to the valuation of option contracts with maturity higher
than one day. As discussed, contrary to the one day option, pricing multi-horizon option
requires the specification and the estimation of the parameters governing the laws of mo-
tion of the physical dynamic and pricing kernel.

Table 4 presents the parameter estimates for the physical process. The estimates for λ,
β0, β1, β2, and θ are broadly in line with those reported in Christoffersen et al. (2013).
The parameter θ captures a pronounced leverage effect in the physical process. Notably,
the parameter β1, which governs volatility persistence, is higher than in the more re-
stricted specifications, indicating that shocks to volatility decay more slowly under the
physical measure. The included cyclical component in the mean return, ẽt, is estimated
to be highly persistent. This richer structure of the physical process provides a solid
foundation for analyzing the additional preference-based distortions introduced in the
RN measure.

Table 4: Parameter estimates physical process

λ α0 α1 α2 β0 β1 β2 θ0
CHJ 2.40 −4.90e− 5 0.97 0.06 2.90e− 19 0.55 7.90e− 7 750.49
no DA 2.40 −1.80e− 5 1.00 0.02 1.00e− 18 0.79 2.70e− 6 262.61
DA 2.40 −1.30e− 5 0.99 0.02 3.40e− 21 0.97 2.90e− 6 63.86

This table reports the parameter estimates for the physical process. The specification of the physical
dynamics is described in Section 3.5.

We now turn our attention to the estimation of the pricing kernel dynamic. Table 5
reports the parameter estimates of the pricing kernel as well as the overall option pric-
ing error. Several conclusions can be drawn, firstly in the absence of DA, enriching the
dynamic of γ2t decreases the VWRMSE only slightly. Indeed, the VWRMSE for the
CHJ model is 5.12 whereas that of no DA is 5.06, suggesting limited overall gains in fit.
Second, Table 6 shows that this modest improvement masks more nuanced effects: the
no-DA pricing kernel improves accuracy for longer-dated contracts but does so at the cost
of worse pricing for short-dated options with low moneyness. Part of the improvement
in the longer-dated options is linked to the introduction of richer dynamics for γ2t, which
provides greater flexibility in accommodating non-trivial term structures in risk premia.
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Notably, long-dated high moneyness options continue to exhibit the largest pricing errors.

Table 5: Parameter estimates Pricing Kernel

ᾱ0 ᾱ1 ᾱ2 β̄0 β̄1 β̄2 θ̄ VWRMSE
CHJ 773.28 5.12
no DA 3.80e− 20 0.70 1.60e− 6 425.35 5.06
DA 8.90e− 7 0.99 0.00e0 2.00e− 18 0.65 1.70e− 6 439.75 4.05

This table reports the parameter estimates for the different versions of the pricing kernel. The first row
presents the estimates for the most restrictive specification, following CHJ. The second row reports the
results for the no-DA model, where the dynamics for h̄t are governed by Equation (17). The third row
shows the estimates for the DA model. The final column reports the Black-Scholes VWRMSE.

Despite leaving the common parameters effectively unchanged, the introduction of the
DA component in the most flexible specification yields a substantial improvement in fit,
lowering the VWRMSE to 4.05. This gain is largely attributable to the added flexibility
of the pricing kernel to accommodate left-side sensitivity. The estimated parameters ᾱ0,
ᾱ1, and ᾱ2 indicate that the DA distortion is persistent and evolves smoothly over time.

5.3 Dissecting the pricing errors

Table 6 illustrates how this improvement translates into more accurate pricing across the
volatility surface. Using the CHJ specification as a baseline, the DA model achieves lower
pricing errors across most of the volatility surface. These improvements are particularly
evident for long-dated, high-moneyness contracts. However, the DA model sacrifices some
accuracy for short-dated options with moneynessM ≤ 0.98, where pricing errors increase
modestly compared to the baseline. These results underscore the empirical relevance of
DA in shaping the RN distribution, particularly by allowing for asymmetry between the
left and right sides of the distribution.

Figure 10 illustrates the evolution of pricing errors over time, highlighting the impact of
relaxing restrictions on the dynamics of the price of risk. There is substantial variation in
pricing error across all models, with the DA model consistently outperforming the more
restrictive specifications. The improvement from incorporating DA is particularly pro-
nounced during calmer periods between crises, aligning with the findings of Schreindorfer
and Sichert (2025), who show that risk sensitivities tend to be higher during low-volatility
environments. In these intervals, the DA model offers the flexibility needed to better cap-
ture pricing differences between low- and high-moneyness options. Notably, the largest
pricing errors often occur when the VIX has declined sharply but the estimated physical
volatility remains elevated due to its persistence.

5.4 Model implied pricing kernel parameters

Figure 11 shows the time series of the risk sensitivity parameters γ1t, γ2t, and γ3t for
the three different model specifications. The top panel displays the evolution of γ1t,
which appears highly volatile under the CHJ model. In contrast, the DA specification
produces a much more stable path for γ1t, with values oscillating around one, reflecting
a more consistent level of sensitivity to the linear price of risk. The center panel shows
the dynamics of γ2t, where variation is relatively muted under the CHJ but becomes far
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Table 6: VWRMSE by Vol surface region
M ≤ 0.96 0.96 < M ≤ 0.98 0.98 < M ≤ 1.02 1.02 < M ≤ 1.04 1.04 < M ≤ 1.06 M > 1.06

τ ≤ 30 4.91 3.48 3.06 2.94 3.58 5.48
30 < τ ≤ 60 3.33 2.95 2.95 2.82 3.09 5.57
60 < τ ≤ 90 2.86 2.68 2.83 3.24 3.17 6.72
90 < τ ≤ 120 2.99 2.70 2.95 3.15 3.33 8.96
120 < τ ≤ 180 2.83 2.70 2.90 3.05 3.36 9.26

(a) CHJ version
M ≤ 0.96 0.96 < M ≤ 0.98 0.98 < M ≤ 1.02 1.02 < M ≤ 1.04 1.04 < M ≤ 1.06 M > 1.06

τ ≤ 30 5.91 4.62 3.46 3.01 3.49 5.16
30 < τ ≤ 60 3.86 3.34 2.94 2.68 2.92 5.41
60 < τ ≤ 90 2.76 2.47 2.47 2.69 2.75 6.64
90 < τ ≤ 120 2.72 2.50 2.56 2.69 2.99 8.82
120 < τ ≤ 180 2.59 2.22 2.51 2.47 2.91 9.13

(b) no DA version
M ≤ 0.96 0.96 < M ≤ 0.98 0.98 < M ≤ 1.02 1.02 < M ≤ 1.04 1.04 < M ≤ 1.06 M > 1.06

τ ≤ 30 5.96 4.66 3.37 2.79 3.19 4.74
30 < τ ≤ 60 4.09 3.34 2.85 2.48 2.65 4.23
60 < τ ≤ 90 3.07 2.45 2.35 2.55 2.61 4.42
90 < τ ≤ 120 2.90 2.43 2.50 2.65 2.93 5.65

120 < τ ≤ 180 2.65 2.10 2.40 2.46 2.99 6.83

(c) DA version where Ct =-0
This table reports the VWMSE for options falling within specific maturity and moneyness ranges. Panels
(a), (b), and (c) present the results for the CHJ model, the no-DA model, and the DA model, respectively.

more pronounced in the no-DA and DA version. This heightened variation is particularly
evident during episodes where market-implied volatility rises moderately from previously
low levels. The bottom panel shows that γ3t, which governs DA, tends to increase in these
same periods, amplifying the effect by widening and reshaping the RN distribution. The
interaction between γ2t and γ3t appears especially impactful in reducing pricing errors
during calm periods between crises (Schreindorfer and Sichert 2025).

5.5 Model implied risk-neutral moments

Figure 12 presents the evolution of the one-period-ahead RN moments across the three
model specifications. The RN mean is frequently negative, particularly under the DA
specification. As discussed earlier in the context of Ct = 0, this pattern reflects episodes
where γ3t > 0, shifting mass toward the left tail and lowering the mean. However, similar
patterns are also observed under the no-DA and CHJ specifications, indicating that part
of the negative first moment arises independently of the DA component.

The second panel shows that both the no-DA and DA models capture greater time vari-
ation in the RN variance compared to the CHJ specification. This is especially evident
during periods when the CHJ model also reports elevated second moments. This suggests
that the richer volatility dynamics in the extended models help better track changes in
perceived market uncertainty.

The third panel reports the time series of skewness. When Ct = 0, a positive value of
γ3t is associated with positive skewness, as shown analytically in Section 3.2. The small
magnitude of the realized one-period-ahead skewness is due to the simultaneous effect
of γ3t on both the first and third moments. Finally, the fourth panel shows that excess
kurtosis remains relatively stable over time and low in level, but its fluctuations exhibit
some correlation with the skewness series. This suggests that changes in asymmetry in
the RN distribution are often accompanied by subtle shifts in tail thickness.
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Figure 10: Daily VWRMSE for the three different pricing kernels.
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This figure shows the 10-period moving average of the Wednesdays’ VWRMSE for the three different
version of the model. The black line presents the daily pricing errors for CHJ pricing kernel. The red
line presents the VWRMSE no DA of the model and the blue line shows the daily VWRMSE for the
DA model.

Figure 13 displays the term structure of the RN second moment across the three model
specifications. The CHJ specification generates a distinctly upward-sloping term struc-
ture of annualized RN variance, particularly at longer maturities. The no-DA model
departs from this pattern: while its overall variance level exhibits greater temporal vari-
ation, it still produces a relatively steep term structure. The DA model yields a term
structure of RN variance that closely resembles that of the no-DA model but with more
pronounced peaks in RN volatility. Moreover, its term structure appears somewhat flat-
ter than that of the no-DA model. On average, the spread between 90- and 180-day
annualized volatility is approximately 1.5 volatility points lower under the DA model,
more in line with the findings of Dew-Becker et al. (2017). They find that the majority
of the variance risk premium is concentrated at the short end of the term structure.

Figure 14 displays the term structure of RN skewness for the three model specifications.
The CHJ model, shown in the top panel, exhibits relatively little variation in skewness
across maturities, particularly at longer horizons. In contrast, the no-DA model allows
for richer dynamics in the sensitivity to risk through time-varying γ1t and γ2t. This added
flexibility introduces meaningful variation in the term structure of skewness, as shown in
the middle panel. This added flexibility translates into improved pricing performance,
especially for longer-dated options where asymmetries in the RN distribution seems to
become more relevant.

Although the skewness for one-period-ahead in the DA model appears relatively flat, as
seen in Figure 12, the DA specification still produces a more pronounced variation in
skewness at longer maturities than either of the more restricted alternatives. This is
evident in the bottom panel, where the sensitivity of the DA model to DA enables it to
capture subtle shifts in asymmetry over time.
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Figure 11: γ1t, γ2t and γ3t for the 3 different versions of the model.
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These figures depict the estimates of γ1t, γ2t, and γ3t extracted under three different versions of the
pricing kernel. Panels (a), (b), and (c) present the estimates for γ1t, γ2t, and γ3t, respectively. The black
line corresponds to the CHJ model, the red line to the flexible no-DA model, and the blue line to the
DA model. In Panel (c), the green line displays the VIX index for comparison. All series are shown as
10-period moving averages.

Figure 12: One day ahead RN moments
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These figures display the one-day-ahead RNmoments implied by the three different models. The moments
are computed using the optimized parameter estimates, with the DA model evaluated at Ct = 0.
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Figure 13: Risk neutral volatility
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These figures depict the estimated RN volatility across different maturities. The square root of the
second moments are shown for 1-, 30-, 90-, and 180-day horizons. Each panel corresponds to one of the
three versions of the pricing kernel. For readability, the figures present 10-period moving averages of the
estimated volatility. The lines are expressed in annualized volatility.

Figure 14: risk neutral skewness
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These figures depict the estimated RN skewness across different maturities. The skewness is shown for
1-, 30-, 90-, and 180-day horizons. Each panel corresponds to one of the three versions of the pricing
kernel. For readability, the figures present 10-period moving averages of the estimated skewness.
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5.6 Robustness to EGARCH physical dynamics

To demonstrate the flexibility of the proposed framework, we replace the Heston and
Nandi (2000) dynamics with an EGARCH specification for the physical return process.
Table 7 reports parameter estimates and pricing errors across the three nested pricing
kernel models. The EGARCH parameters governing volatility persistence and asymmetry
remain stable across specifications, indicating that the inclusion of DA primarily affects
the risk-neutral transformation rather than the physical dynamics themselves in the joint
estimation.

The pricing results broadly echo those found under the Heston–Nandi model. The bench-
mark CHJ model yields a VWRMSE of 7.08. Allowing for richer variance dynamics
through a flexible h̄t process (no-DA) modestly improves fit, reducing the VWRMSE to
6.57. However, it is the introduction of disappointment aversion that delivers the most
substantial improvement: the DA model achieves a VWRMSE of 5.26, a reduction of
about 25%. The reduction in pricing error is largest when the DA threshold is set at
Ct = 0, where the pricing kernel distinguishes between gains and losses.

These results reinforce the conclusion that disappointment aversion plays an essential
role in shaping investors’ preferences. While the framework accommodates a range of
GARCH-type physical processes, it is the DA component that drives the improved pricing
performance.

Table 7: Parameter estimates: EGARCH dynamics
λ α0 α1 α2 β0 β1 β2 θ0

CHJ 0.17 2.60e− 4 2.40e− 8 −0.01 −0.22 0.98 0.12 −0.12
no DA 0.17 2.60e− 4 7.50e− 49 0.22 −0.36 0.96 0.32 −0.23
DA 0.17 2.60e− 4 5.00e− 14 −0.02 −0.37 0.96 0.16 −0.17

(a) Parameters physical process

ᾱ0 ᾱ1 ᾱ2 β̄0 β̄1 β̄2 θ̄ VWRMSE
CHJ −0.12 7.08
no DA −0.27 0.97 0.25 −0.17 6.57
DA 8.70e− 4 0.91 0.00e0 −0.27 0.97 0.15 −0.15 5.26

(b) parameters risk neutral process
This table reports the parameter estimates for both the physical process and the risk-neutral pricing
kernel. Panel (a) presents the estimates for the physical dynamics, which follow the EGARCH speci-
fication. Panel (b) reports the parameter estimates for three versions of the pricing kernel. The first
row corresponds to the most restrictive specification, following CHJ. The second row shows estimates
for the no-DA model, which incorporates richer dynamics for γ2t. The third row reports the estimates
for the full DA model. The final column in Panel (b) presents the Black-Scholes VWRMSE for each
specification.
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6 Conclusion

This paper develops a reduced-form option pricing framework that incorporates disap-
pointment aversion (DA) into a dynamic stochastic discount factor. Building on Christof-
fersen et al. (2013), our model introduces time-varying sensitivities to return, volatility,
and DA, while retaining tractability through a closed-form solution for one-day options.
This allows us to cleanly identify investor preference distortions from cross-sectional op-
tion prices. Empirically, we estimate three nested models and show that incorporating
DA significantly improves pricing accuracy, especially for deep out-of-the-money and
medium-term contracts. The DA-enhanced model reduces the vega-weighted root mean
squared error by about 20% compared to standard benchmarks. We also uncover rich time
variation and horizon-dependence in DA: retail-driven one-day options show gain-seeking
behavior, whereas medium-term options reveal traditional disappointment aversion.

While much of the option pricing literature focuses on enriching the physical process, in-
troducing jumps, stochastic volatility, or other features to better match observed prices,
our approach shifts the emphasis toward understanding investor preferences given the un-
derlying return dynamics. By embedding disappointment aversion directly into the pric-
ing kernel, we highlight the importance of preference distortions in shaping risk-neutral
distributions. This perspective complements structural models and offers a flexible em-
pirical tool to uncover how investors evaluate different market outcomes. In doing so, our
framework opens a pathway to better capture the behavioral components embedded in
option prices
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Babaoğlu, K., P. Christoffersen, S. Heston, and K. Jacobs (2018). “Option valuation with
volatility components, fat tails, and nonmonotonic pricing kernels”. In: The review of
asset pricing studies 8.2, pp. 183–231.

Babiak, M. (2024). “Generalized disappointment aversion and the variance term struc-
ture”. In: Journal of financial and quantitative analysis 59.4, pp. 1796–1820.

Bates, D. and R. Craine (1999). “Valuing the futures market clearinghouse’s default ex-
posure during the 1987 crash”. In: Journal of money, credit and banking 31.2, pp. 248–
272.
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A Appendix

A.1 christoffersen2013capturing

et = rf + λht −
ht
2

ht+1 = β0 + β1ht + β2

(
zt+1 − θ

√
ht

)2
γ̃1,t = 0 −→ γ3t = 0

h̄t = ψht −→ γ2t =
1− 1/ψ

2ht
and γ1t =

rf − ψet
ψht

− 1

2

A.2 Detailed derivations
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Physical dynamics

rt+1 = ln (St+1/St)

rt+1 = et +
√
htzt+1

zt ∼ i.i.d.N (0, 1)

Example of dynamics for et and ht routinely used in the GARCH-Option pricing literature
are:

et = rf + λht −
ht
2
+ ẽt

ẽt+1 = α0 + α1ẽt + α2

√
htzt+1

ht+1 = β0 + β1ht + β2

(
zt+1 − θ

√
ht

)2
The following discussions are not restricted to these dynamics.

Pricing-Kernel

P̃Kt+1 ≡
(
1 + γ3t1[rt+1<−κt]

)
× exp

(
γ1trt+1 + γ2tr

2
t+1

)
PKt+1 =

P̃Kt+1

Et

[
P̃Kt+1

]
Et

[
P̃Kt+1

]
= Et

[
exp

(
γ1trt+1 + γ2tr

2
t+1

)]
+ γ3tEt

[
exp

(
γ1trt+1 + γ2tr

2
t+1

)
1[rt+1<−κt]

]
Et

[
exp

(
γ1trt+1 + γ2tr

2
t+1

)]
= Et

[
exp

(
γ1t

(
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√
htzt+1

)
+ γ2t

(
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√
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γ1tet + γ2te

2
t −

1

2
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2 (1− 2γ2tht)
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=
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1− 2htγ2t
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(
2γ2te

2
t + 2γ1tet + htγ

2
1t

2 (1− 2γ2tht)

)
Manipulating the second part of P̃Kt+1
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[
exp

(
γ1trt+1 + γ2tr

2
t+1

)
1[rt+1<−κt]

]
=

−κt∫
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2
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)
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)]
Φ
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Hence it must be the case that

1− 2htγ2t > 0 ⇐⇒ γ2t <
1

2ht
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[
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]
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[
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Risk neutral dynamics
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a1,t ≡ γ1tht + et
1− 2γ2tht
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hence
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)
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First interpretation

Let us denote by Qnd the No-Disappointment risk-Neutral probability,

rt+1 ∼Qnd

N
(
a1,t, h̄t

)
the pricing kernel which enable us to move from Qnd to Q is given by
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Second interpretation
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Hence then under Q, rt+1 follows a mixture of truncated Gaussian and Gaussian distri-
bution.
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Risk neutral moments

ΨQ
t (u) = lnEQ

t [exp (urt+1)] = ln

1 + γ3tΦ
(
Ct −

√
h̄tu
)

1 + γ3tΦ (Ct)

+ a1,tu+
h̄t
2
u2

Take Υ = Ct −
√
h̄tu and B = 1 + γ3tΦ(Υ), it follows that

ΨQ
t (u)′ = −

√
h̄tγ3t

ϕ (Υ)

B
+ a1,t + h̄tu

ΨQ
t (u)

′′
= −h̄tγ3t

γ3tϕ (Υ)2 − ϕ′ (Υ)B

B2
+ h̄t

ΨQ
t (u)′′′ = h̄

3/2
t γ3t

(
−ϕ′′ (Υ)

B
+

3γ3tϕ (Υ)ϕ (Υ)′

B2
− 2γ23tϕ (Υ)3

B3

)

ΨQ
t (u)′′′′ = h̄2tγ3t

(
ϕ′′′ (Υ)B3 − 4γ3tB

2ϕ (Υ)ϕ′′ (Υ)− 3γ3tϕ
′ (Υ)2B2

B4

)
+

h̄2tγ3t

(
12γ23tBϕ (Υ)2 ϕ′ (Υ)− 6γ33tϕ (Υ)4

B4

)

ΨQ
t (0)′ − et = (γ1t + 2γ2tet) h̄t −

γ3tϕ (Ct)
√
h̄t

1 + γ3tΦ (Ct)

h̄t ≡
ht

1− 2htγ2t

γ3t =
1− e(γ1t−γ̄1t)h̄t

Φ
(
Ct −

√
h̄t

)
e(γ1t−γ̄1t)h̄t − Φ (Ct)

1 + γ3tΦ (Ct) =

(
Φ
(
Ct −

√
h̄t

)
− Φ (Ct)

)
e(γ1t−γ̄1t)h̄t

Φ
(
Ct −

√
h̄t

)
e(γ1t−γ̄1t)h̄t − Φ (Ct)

γ3tϕ (Ct)
√
h̄t

1 + γ3tΦ (Ct)
=

(
e−(γ1t−γ̄1t)h̄t − 1

)
ϕ (Ct)

√
h̄t

Φ
(
Ct −

√
h̄t

)
− Φ (Ct)

ΨQ
t (0)′ = rf −

1

2
h̄t + (γ1t − γ̄1t) h̄t +

(
1− e−(γ1t−γ̄1t)h̄t

)
ϕ (Ct)

√
h̄t

Φ
(
Ct −

√
h̄t

)
− Φ (Ct)

≈ rf −
1

2
h̄t +

1 + ϕ (Ct)
√
h̄t

Φ
(
Ct −

√
h̄t

)
− Φ (Ct)

 (γ1t − γ̄1t) h̄t

37



ΨQ
t (0)

′′

h̄t
− 1 =

(
e−(γ1t−γ̄1t)h̄t − 1

)
ϕ′ (Ct)

Φ
(
Ct −

√
h̄t

)
− Φ (Ct)

−


(
e−(γ1t−γ̄1t)h̄t − 1

)
ϕ (Ct)

Φ
(
Ct −

√
h̄t

)
− Φ (Ct)

2

=

(
1− e−(γ1t−γ̄1t)h̄t

)
ϕ (Ct)

Φ
(
Ct −

√
h̄t

)
− Φ (Ct)

Ct −

(
1− e−(γ1t−γ̄1t)h̄t

)
ϕ (Ct)

Φ
(
Ct −

√
h̄t

)
− Φ (Ct)


no-arbitrage condition
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Conditions for γ3t > −1
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impossible, hence, it should be the case that:
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A.3 Model implied option prices

The price of a European call option as:
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Computing model implied option prices for τ = 1
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vtSt − (1 + γ3tΦ(Ct)− (1 + γ3t)Φ (mt))K if ln

(
K
St

)
< −κt

erf (1 + γ3tΦ (Ct))× Cm (et, ht, γ1t, γ2t)

= Φ
(√

h̄t −Dt

)
S̃t − Φ (−Dt)K

+γ̃3t

[(
Φ
(
Ct −

√
h̄t

)
− Φ

(
Dt −

√
h̄t

))
S̃t − (Φ (Ct)− Φ (Dt))K

]
where

Dt ≡
ln
(

K
St

)
− a1,t√
h̄t

; S̃t ≡ e−h̄t(2a1,t+h̄t)St; γ̃3t ≡ γ3t1[ln( K
St

)
<−κt

]

A.4 Simulating risk-neutral returns in the presence of disap-
pointment aversion

To evaluate option prices with maturity τ > 1, we consider three simulation strategies,
corresponding to simulation under (i) the disappointment-averse risk-neutral measure
Q, (ii) a no-disappointment risk-neutral measure Qnd, and (iii) the physical measure P.
Below, we provide the detailed steps for each method.

Simulation under Q: Mixture of Gaussian and truncated Gaussian

Under the full disappointment-averse risk-neutral measureQ, return innovations are sam-
pled from a mixture of Gaussian and truncated Gaussian distributions.

Algorithm Steps:

1. Simulate:

• ẑQ ∈ RN×τ ∼ N (0, 1)

• ÛQ
1 , Û

Q
2 ∈ RN×τ ∼ U(0, 1)

2. Initialize:

ẽ
(j)
t = ẽt, h

(j)
t = ht, γ̃

(j)
1t = γ̃1t, h̄

(j)
t = h̄t for j = 1, . . . , N

3. For i = 0 to τ − 1, and for each j = 1, . . . , N , recursively update:

(a) Compute:

e
(j)
t+i = rf +

(
λ− 1

2

)
h
(j)
t+i + ẽ

(j)
t+i

γ
(j)
2t+i =

1

2

(
1

h
(j)
t+i

− 1

h̄
(j)
t+i

)
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(b) Compute bounds for γ
(j)
1t+i:

γ̂
l(j)
1t+i =

1

h̄
(j)
t+i

log

 Φ(−C)

Φ(−C +
√
h̄
(j)
t+i)

 ,

γ̂
u(j)
1t+i =

1

h̄
(j)
t+i

log

 Φ(C)

Φ(C −
√
h̄
(j)
t+i)


(c) Compute γ

(j)
1t+i using interpolated transformation:

γ
(j)
1t+i =

rf −
e
(j)
t+i

1−2γ
(j)
2t+ih

(j)
t+i

h̄
(j)
t+i

− 1

2
+ γ̂

l(j)
1t+iγ̂

u(j)
1t+i ·

(
exp(−γ̃(j)1t+i)− 1

γ̂
u(j)
1t+i exp(−γ̃

(j)
1t+i)− γ̂

l(j)
1t+i

)

(d) Compute:

a
(j)
1,t+i =

γ
(j)
1t+ih

(j)
t+i + e

(j)
t+i

1− 2γ
(j)
2t+ih

(j)
t+i

, κ
(j)
t+i = −

[(
γ
(j)
1t+i +

e
(j)
t+i

h
(j)
t+i

)
h̄
(j)
t+i + C

√
h̄
(j)
t+i

]

(e) Compute the truncation boundary in standard normal form:

κ̄
(j)
t+i =

κ
(j)
t+i + a

(j)
1,t+i√

h̄
(j)
t+i

(f) Compute mixing probability ρ
(j)
t+i:

ρ
(j)
t+i =


γ
(j)
3t+iΦ(C)

1+γ
(j)
3t+iΦ(C)

, if γ
(j)
3t+i > 0

−γ
(j)
3t+i(1−Φ(C))

1+γ
(j)
3t+iΦ(C)

, if γ
(j)
3t+i ≤ 0

(g) Sample from truncated or non-truncated:

T ẑ
(j)
t+i+1 =

Φ−1
(
ÛQ
1 (j, i+ 1) · Φ(−κ̄(j)t+i)

)
, if γ

(j)
3t+i > 0

Φ−1
(
ÛQ
1 (j, i+ 1) · Φ(κ̄(j)t+i) + Φ(−κ̄(j)t+i)

)
, if γ

(j)
3t+i ≤ 0

T r̄
(j)
t+i+1 = a

(j)
1,t+i +

√
h̄
(j)
t+i · T ẑ

(j)
t+i+1

r̄
(j)
t+i+1 = a

(j)
1,t+i +

√
h̄
(j)
t+i · ẑQ(j, i+ 1)

(h) Generate return using the mixture:

r
(j)
t+i+1 = T r̄

(j)
t+i+1 · I

[
ÛQ
2 (j, i+ 1) ≤ ρ

(j)
t+i

]
+ r̄

(j)
t+i+1 · I

[
ÛQ
2 (j, i+ 1) > ρ

(j)
t+i

]
(i) Back out the implied shock:

ẑ(j, i+ 1) =
r
(j)
t+i+1 − e

(j)
t+i√

h
(j)
t+i
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(j) Update latent variables using:

h
(j)
t+i+1 = β0 + β1h

(j)
t+i + β2

(
ẑ(j, i+ 1)− θ

√
h
(j)
t+i

)2

ẽ
(j)
t+i+1 = α0 + α1ẽ

(j)
t+i + α2

√
h
(j)
t+i · ẑ(j, i+ 1)

γ̃
(j)
1t+i+1 = ᾱ0 + ᾱ1γ̃

(j)
1t+i + ᾱ2ẑ(j, i+ 1)

h̄
(j)
t+i+1 = β̄0 + β̄1h̄

(j)
t+i + β̄2

(
ẑ(j, i+ 1)− θ̄

√
h̄
(j)
t+i

)2

This method requires the most elaborate sampling strategy but directly reflects the struc-
ture of the disappointment-averse risk-neutral distribution.

Simulation under Qnd: Gaussian dynamics with DA adjustment

Under the no-disappointment risk-neutral measure Qnd, return dynamics are Gaussian
and the disappointment aversion enters as a Radon-Nikodym correction. This method
avoids mixture sampling and provides numerical stability.

Option pricing formula:

OPt,τ = e−rf τ · EQnd

t

[
g(St+τ ) ·

τ∏
i=1

PKQnd→Q
t+i

]
(18)

Simulation Steps:

1. Simulate:
ẑQ

nd ∈ RN×τ ∼ N (0, 1), set constant Ct = C

2. Initialize:
ẽ
(j)
t = ẽt, h

(j)
t = ht, γ̃

(j)
1t = γ̃1t, h̄

(j)
t = h̄t

3. For i = 0 to τ − 1, and for each j:

(a) Compute:

e
(j)
t+i = rf + (λ− 1

2
)h

(j)
t+i + ẽ

(j)
t+i

γ
(j)
2t+i =

1
2

(
1

h
(j)
t+i

− 1

h̄
(j)
t+i

)

(b) Compute bounds for γ
(j)
1t+i:

γ̂
l(j)
1t+i =

1

h̄
(j)
t+i

log

 Φ(−C)

Φ(−C +
√
h̄
(j)
t+i)


γ̂
u(j)
1t+i =

1

h̄
(j)
t+i

log

 Φ(C)

Φ(C −
√
h̄
(j)
t+i)
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(c) Compute γ
(j)
1t+i using the interpolated form (same as in A.1)

(d) Compute:

a
(j)
1,t+i =

γ
(j)
1t+ih

(j)
t+i + e

(j)
t+i

1− 2γ
(j)
2t+ih

(j)
t+i

κ
(j)
t+i = −

[(
γ
(j)
1t+i +

e
(j)
t+i

h
(j)
t+i

)
h̄
(j)
t+i + C

√
h̄
(j)
t+i

]

(e) Compute transformed shock:

ẑ(j, i+ 1) =

√√√√ h̄
(j)
t+i

h
(j)
t+i

· ẑQnd

(j, i+ 1) +
γ
(j)
1t+ih̄

(j)
t+i +

h̄
(j)
t+i

h
(j)
t+i

e
(j)
t+i − e

(j)
t+i√

h
(j)
t+i

(f) Generate return:

r
(j)
t+i+1 = e

(j)
t+i +

√
h
(j)
t+i · ẑ(j, i+ 1)

(g) Compute the DA adjustment kernel:

PK
Qnd→Q(j)
t+i+1 =

1 + γ
(j)
3t+i · I

[
r
(j)
t+i+1 < −κ(j)t+i

]
1 + γ

(j)
3t+i · Φ(C)

(h) Update latent variables (as in A.1).

Simulation under P: Physical measure with full kernel

This strategy simulates return paths under the physical measure and applies the full
pricing kernel to adjust for risk and disappointment aversion.

Option pricing formula:

OPt,τ = e−rf τ · EP
t

[
g(St+τ ) ·

τ∏
i=1

PKt+i

]
(19)

Simulation steps:

1. Simulate:
ẑ ∈ RN×τ ∼ N (0, 1), set Ct = C

2. Initialize:
ẽ
(j)
t = ẽt, h

(j)
t = ht, γ̃

(j)
1t = γ̃1t, h̄

(j)
t = h̄t

3. For i = 0 to τ − 1, and for each j:

(a) Compute:

r
(j)
t+i+1 = e

(j)
t+i +

√
h
(j)
t+i · ẑ(j, i+ 1)

compute κ
(j)
t+i and all gamma terms as in A.1

44



(b) Compute the full pricing kernel:

PK
(j)
t+i+1 =

exp
(
γ
(j)
1t+ir

(j)
t+i+1 + γ

(j)
2t+i(r

(j)
t+i+1)

2
)
·
(
1 + γ

(j)
3t+i · I[r

(j)
t+i+1 < −κ(j)t+i]

)
(
1 + γ

(j)
3t+iΦ(C)

)
·
√
1− 2h

(j)
t+iγ

(j)
2t+i · exp

(
2γ

(j)
2t+i(e

(j)
t+i)

2+2γ
(j)
1t+ie

(j)
t+i+h

(j)
t+i(γ

(j)
1t+i)

2

2(1−2γ
(j)
2t+ih

(j)
t+i)

)
(c) Update all latent variables (as in A.1).

A.5 Extracting the empirical pricing kernel

Risk neutral density

We implement the method of Breeden and Litzenberger (1978) to recover the RN density
from option prices. The following steps detail the construction of the density:

1. For a fixed trading day t and maturity τ , collect put option quotes with positive
bid and ask prices:

bidi > 0, aski > 0.

2. Filter out options with excessive effective spreads:

aski − bidi

(aski + bidi)/2
≤ 0.75.

3. Ensure monotonicity in observed put prices P (K) by removing price outliers that
violate:

P (Ki+1) ≥ P (Ki).

4. Augment the data with two synthetic points for numerical stability:

P (100) = 0, P (2S) = S.

Note that the value of the SPX on 1996-01-01 was 620.73 and on 2021-12-31 it was
4766.18. It is unlikely that P (100) is far removed from 0.

5. Retain only those maturities with at least four valid option contracts and at least
one with K > S.

6. Fit a smooth spline P̂ (K) through the mid-quotes of the put option prices as a
function of strike K.

7. Approximate the discrete RN probabilities:

p(Ki) = P̂ (Ki + 1)− P̂ (Ki).

8. Expand the strike support until:

min p(Ki) < 0.005.

9. Compute the log return implied by each strike:

ri = log

(
Ki

S

)
.

10. Construct the RN density over the log return grid using discrete differences:

fQ(ri) =
p(ri+1)− p(ri)

ri+1 − ri
.
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Estimating the physical distribution from GARCH simulations

We simulate returns under the physical measure using a GARCH model estimated on
historical log returns. The procedure is as follows:

1. Estimate a GARCH-type model (e.g., EGARCH or GRJ-GARCH) for log returns

rt and simulate future returns {r(s)t+1}Ss=1 over τ -day horizon.

2. Define N ≈ 50 bins over the support [rmin, rmax] from the simulated log returns at
ma.

3. Let bj be the midpoint of bin j and define the empirical density:

fP (bj) =
1

S · wj

S∑
s=1

1
r
(s)
t+1∈binj

,

where wj is the width of bin j.

4. Rescale the density to remove simulated returns falling outside the RN support,
redistributing excess mass proportionally across remaining bins:

f ∗
P (bj) =

fP (bj)∑
j∈R fP (bj)

for j ∈ R,

where R is the restricted range of the RN distribution.

5. Interpolate the RN density fQ(r) at the bin midpoints {bj} using linear interpola-
tion.

6. Standardize the log returns bj using the standard deviation σP of the simulated
distribution:

rstdj =
bj
σP
.

This procedure yields matched RN and physical densities over a common support, allow-
ing for direct calculation of the pricing kernel as:

logPK(r) = log fQ(r)− log fP (r).
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A.6 Tables

Table 8: The pricing kernel and DA (Annual regressions)

Year rt r2t DA R2 R2
no DA Year rt r2t DA R2 R2

no DA
2004 -0.036*** 0.029*** 0.431*** 0.37 0.33 2013 0.06*** 0.042*** 0.83*** 0.3 0.22

(-2.77) (6.71) (10.2) (6.99) (16.05) (29.04)
2005 0.037** 0.011** 0.46*** 0.23 0.18 2014 -0.102*** 0.057*** 0.593*** 0.49 0.45

(2.48) (2.15) (10.44) (-13.09) (22.02) (23.88)
2006 0.124*** 0.058*** 0.61*** 0.22 0.15 2015 -0.056*** 0.037*** 0.467*** 0.32 0.29

(7.92) (11.13) (12.37) (-6.94) (13.93) (18.1)
2007 0.138*** 0.084*** 0.654*** 0.24 0.21 2016 0.018*** 0.092*** 0.768*** 0.45 0.38

(8.36) (20.47) (11.06) (2.87) (48.25) (37.27)
2008 -0.147*** 0.022*** 0.002 0.37 0.37 2017 -0.001 0.156*** 0.866*** 0.62 0.55

(-9.94) (7.09) (0.04) (-0.21) (113.22) (65.7)
2009 0.099*** 0.078*** 0.466*** 0.41 0.4 2018 -0.094*** 0.018*** 0.392*** 0.31 0.29

(6.97) (24.62) (8.91) (-19.24) (10.47) (26.12)
2010 0.178*** 0.098*** 0.652*** 0.4 0.36 2019 0.101*** 0.118*** 0.707*** 0.38 0.32

(13.04) (30.19) (13.27) (22.9) (83.74) (47.86)
2011 0.1*** 0.083*** 0.589*** 0.33 0.31 2020 0.191*** 0.123*** 0.622*** 0.48 0.45

(6.52) (22.97) (10.64) (37.53) (106.94) (33.12)
2012 0.189*** 0.079*** 0.979*** 0.33 0.24 2021 0.263*** 0.131*** 0.725*** 0.59 0.55

(19.25) (32.6) (26.97) (65.73) (129.09) (48.45)

This table reports the results of annual regressions of the log pricing kernel on standardized return
quantiles, estimated separately for each year from 2004 to 2021. The dependent variable is the log pricing
kernel, defined as the logarithm of the ratio between the risk-neutral and physical return densities. Risk-
neutral densities are extracted from CBOE option prices with maturities fixed at 25 days, following
Breeden and Litzenberger (1978), by applying the second derivative to a smooth spline fitted to put
prices. Physical return densities are obtained by simulating returns from an EGARCH(2,2)-in-mean
(2,2) model estimated on SPX returns. Return quantiles are standardized by the standard deviation
of the simulated distribution. The regression includes the standardized return r∗t , its square (r∗t )

2, a
disappointment aversion indicator I[r∗t < −Ct], and time fixed effects. Reported are the coefficient
estimates and their associated t-statistics (in parentheses). R2 values are provided for both the full
specification and a restricted version without the DA component. Statistical significance at the 10%,
5%, and 1% levels is denoted by *, **, and ***, respectively.
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A.7 Figures

Figure 15: Regressions log pricing kernel
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These figures display the coefficient estimates from the regressions described in Equation (5). Each day,
we regress the logarithm of the empirical pricing kernel, extracted from SPX options with maturities
closest to 30 days, on a constant, the standardized return r∗i , its non-centered square (r∗i −a)2, and a DA
indicator. The estimated coefficients are averaged within each month and plotted. The fourth panel shows
the incremental explanatory power of the DA component, measured as the difference in R2 between the
full regression in Equation (5) and a restricted version that excludes the DA term. The physical densities
are constructed by estimating an EGARCH(2,2) model with an in-mean ARMA(2,2) specification on SPX
returns, and simulating the corresponding conditional return distribution. Simulated returns are grouped
into 50 equally sized intervals to approximate the density, and return quantiles are standardized by the
standard deviation of the simulated physical distribution. The RN densities are derived from CBOE
option data using contracts with closest to 30 day for that date, following Breeden and Litzenberger
(1978).
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Figure 16: T-statistics: daily regressions (5)
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These figures display the t-statistics from the regressions described in Equation (5). Each day, the
logarithm of the empirical pricing kernel, extracted from SPX options with maturities closest to 30 days,
is regressed on a constant, the standardized return r∗i , its non-centered square (r∗i − a)2, and a DA
indicator. The t-statistics are averaged within each month and plotted.

Figure 17: Term structure RN densities vs No DA density
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The figure depicts the wedge between the standard deviation and skewness of the DA RN and no DA
RN distributions over 180-day terms as a function of γ3t. The upper panel show the average wedge
across terms for the standard deviation and the lower panel for the skewness. To simulate the physical
distribution, we use an EGARCH(2,2)-in-mean(2,2) model. The results are shown for three different
values of Ct = {−1.5, 0, 1.5}.
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