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1 Introduction

In economic and financial systems, accurately modeling distributions that exhibit heavy tails,
where extreme events occur more frequently than predicted by normal distributions, is crucial
for understanding market dynamics and assessing risk. Traditional models often fall short in
capturing these heavy-tailed behaviors, leading to underestimation of the likelihood and impact
of rare but significant events. A better description and understanding of such distributions
has occupied an important role in recent economic, financial, and statistical research (for a
short review see Gabaix 2016). By their very nature, tail events are rare, limiting the number
of available observations and complicating statistical inference. The resulting data sparsity
leads to high estimation variance, particularly for tail-related measures. These challenges are
further amplified in inherently data-scarce settings, such as short time series, where reliably
characterizing the tails becomes even more difficult.

Existing approaches to this problem typically involve either fitting a parametric distribution to
the limited available data, using methods such as maximum likelihood estimation or moment
matching, or resampling the data through techniques like bootstrapping. While these meth-
ods are easy to implement, they have notable limitations. Parametric approaches require the
specification of a functional form in advance, which can lead to model misspecification if the
true distribution deviates from the assumed family. Resampling methods, in contrast, tend to
underestimate the severity of tail events, particularly in heavy-tailed settings. This is less of
a concern under Gaussian assumptions, where tail behavior is more closely tied to the center
of the distribution. However, in power-law contexts, the maximum observed value is highly
dependent on sample size, making it unlikely that resampled data will capture the full extent of
future extremes.

The issue of small sample sizes in the estimation of risk measures such as Value-at-Risk (VaR)
and Expected Shortfall (ES) has long been recognized in financial econometrics. Studies such
as Danielsson and Vries (2005); Duffie and Pan (1997); Embrechts et al. (2005); Hoga (2022);
McNeil and Frey (2000) document how tail-based risk measures are prone to high estimation
error, especially when sample sizes are limited and the underlying distributions are heavy-
tailed. More recent contributions have further explored these limitations in applied settings,
showing how small-sample bias affects both unconditional and conditional risk estimates. For
instance, Gao et al. (2022) investigate finite-sample distortions in ES estimation using extreme
value theory based methods, while Patton et al. (2019) develop and evaluate non-parametric and
semi-parametric estimators of conditional ES in low-data settings. Similarly, Du et al. (2018)
and Martins and Ziegel (2021) highlight the challenges in forecasting and back-testing tail
risk in volatile or illiquid markets, where data sample period is short. Regulatory frameworks
such as Basel III and the Fundamental Review of the Trading Book attempt to address these
issues through conservative buffers and stressed-scenario measures, which serve as proxies for
robustness rather than improving the core estimation process.

To address the modeling challenges posed by heavy-tailed distributions, recent research has
turned to generative models that simulate such distributions in a non-parametric way (Ramzan
et al. (2024)), thereby avoiding rigid structural assumptions. In this paper, we extend this line
of work by exploring the use of quantum Boltzmann machines (QBMs), a class of quantum
generative machine learning models inspired by statistical physics, for simulating heavy-tailed
distributions in low-data environments. QBMs offer a promising approach due to their capacity
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to model complex, high-dimensional probability distributions with a compact quantum repre-
sentation (Tüysüz et al. 2024). We demonstrate how QBM-based approaches can improve the
risk assessment of young or early-stage firms, where performance data is limited but accurately
capturing downside risk is essential for investment and policy decisions.

Boltzmann Machines (BM), particularly their restricted variants (RBM), have been explored in
the literature as generative models for learning complex probability distributions. RBMs, with
their simplified bipartite structure, make learning more tractable compared to general BMs, in-
troducing strong simplifications with respect to the original model but still retaining the mean-
ingful predictive capacity (Smolensky et al. 1986; Hinton 2002; Hinton and Salakhutdinov
2006). However, when applied to large-scale problems or high-dimensional data, RBMs face
significant scalability challenges. Training these models involves computationally expensive
sampling techniques, such as Gibbs sampling or contrastive divergence, which become infeasi-
ble as the size of the network grows. Moreover, their reliance on approximations for gradient-
based learning often results in suboptimal performance, particularly for capturing complex
patterns. These limitations have led to a decline in the use of classical BMs, paving the way
for alternative generative approaches, including quantum variants. QBMs, extending classi-
cal RBMs into the quantum domain, leverage quantum states and transformations to represent
complex distributions that classical RBMs may not satisfactorily model (Anschuetz and Cao
2019; Song et al. 2019).

The advent and ongoing advancement of quantum computing have accelerated research into
solving problems related to finance and economics, providing innovative methodologies and
computational efficiencies that surpass classical approaches (Herman et al. 2023). Specific ap-
plications under active exploration include portfolio optimization, credit risk modeling, deriva-
tives pricing, and systemic risk assessment, where classical methods often struggle with non-
convex optimization landscapes, high-dimensional state spaces, and heavy-tailed probability
distributions. Quantum optimization techniques have been applied to portfolio allocation prob-
lems with combinatorially many asset configurations (Buonaiuto et al. 2023). Meanwhile,
quantum amplitude estimation enables more efficient calculation of risk measures (e.g., Value-
at-Risk) (Woerner and Egger 2019; Skavysh et al. 2023) and option pricing via accelerated
Monte Carlo simulations and Hamiltonian Simulation (Stamatopoulos et al. 2020; Stamatopou-
los and Zeng 2024).

The application of quantum generative models in financial applications has largely been studied
using gate-based Noisy Intermediate Scale Quantum (NISQ) devices and algorithms adapted
to this kind of systems, such as for example Quantum Circucit Born Machines (Liu and Wang
2018) and Quantum Generative Adversarial Networks (Dallaire-Demers and Killoran 2018),
employing parameterized quantum circuits to generate data. These generative techniques have
been implemented and tested on real hardware (Zhu et al. 2022) garnering attention for the
exploration of real applications in finance (Coyle et al. 2021). These applications have been
further modified to help enhance financial analysis such as portfolio optimization, risk analysis,
time series analysis and anomaly detection (see for example Orlandi et al. (2024); Ganguly
(2023); Zhou et al. (2024); Bhasin et al. (2024); Stein et al. (2024)). Despite the research
into these NISQ models, little research has been conducted on using QBM trained on quantum
annealing hardware for financial applications.

To evaluate the practical value of our quantum generative modeling approach, we apply it to
a challenging empirical setting: estimating financial risk for newly listed firms with limited
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historical return data. Using daily return data from 400 U.S. firms obtained through the Centre
for Research in Security Prices (CRSP) database, we focus on measuring risk based on the first
year of returns following their initial public offering. This short sample is used to compute stan-
dard financial risk metrics—including standard deviation, VaR, ES, skewness, kurtosis, and tail
index. These first-year risk measures are then augmented with 400 observations synthesized by
a trained QBM, which learns from the observed return distribution. To assess whether the aug-
mented data improve risk estimation, we compare the original one-year estimates and QBM-
augmented estimates against the corresponding metrics computed over a full five-year horizon.
This extended horizon serves as a more stable benchmark for a firm’s risk profile, offering a
natural target for evaluating predictive performance. We also benchmark our results against a
classical RBM to isolate the contribution of quantum structure in the generative process.

Our results show that QBM-generated data significantly enhance the prediction of longer-term
risk measures across several dimensions. The added value is clearest for metrics that rely on
extreme outcomes, such as VaR, ES, kurtosis, and the tail index, where small samples typically
struggle. For example, the QBM-augmented one-year VaR yields a significant coefficient,
whereas its RBM-augmented counterpart does not. These improvements align with the expec-
tation that tail sensitive measures benefit most from data augmentation and highlight QBM’s
ability to capture complex, non-Gaussian structures in the data. In contrast, standard devia-
tion and skewness, measures that are less sensitive to the tails of the distribution, show smaller
or no gains. Taken together, these results suggest that QBM offers a promising tool for aug-
menting financial risk models in settings where traditional approaches are constrained by data
availability.

The rest of the paper is structured as follows: Section 2 introduces Restricted Boltzmann Ma-
chines, and Section 3 the Quantum counterpart; Section 4 describes the simulation analysis.
Subsequently, Section 5 reports the empirical analysis for young firms, followed by the conclu-
sions.

2 Restricted Boltzmann Machine

Boltzmann machines (BMs) are a class of neural network models that have played a pivotal role
in the advancement of unsupervised learning and probabilistic modeling. Introduced by Geof-
frey Hinton, Terrence Sejnowski and others in the first half of the 80s (Fahlman et al. 1983;
Ackley et al. 1985) as an evolution of Hopfield models (Hopfield 1982), these networks are
named after the Boltzmann distribution in statistical mechanics, which models their probabilis-
tic behavior. BMs are characterized by their network architecture, with units symmetrically
connected and operating in a stochastic manner. This design enables them to model complex
probability distributions over high-dimensional data, making them particularly suited for tasks
such as dimensionality reduction and feature learning. However, their computational complex-
ity and training challenges have historically limited their widespread use, leading to the devel-
opment of more tractable variants like Restricted Boltzmann Machines (RBMs). The roots of
RBMs trace back to Smolensky et al. (1986), where the concept was originally introduced, and
Hinton (2002), in which an efficient training algorithm was described.

RBMs share the theoretical underpinnings of BMs: they are rooted in energy-based models and
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Gibbs sampling, providing a wide set of tools for understanding their probabilistic functioning.
Over the years, they have undergone refinements and adaptations, with researchers harness-
ing their capabilities for diverse applications, ranging from collaborative filtering to feature
learning and dimensionality reduction.

This section delves into the theoretical underpinnings of RBMs, exploring their architecture,
probabilistic modeling, training procedures, and applications. By unraveling the intricacies
of RBMs, we aim to provide a comprehensive understanding of their historical evolution and
significance in the broader landscape of machine learning and motivations for their quantum
counterpart.

2.1 Basic Architecture

RBMs are a type of generative stochastic artificial neural network that consists of two layers:
a visible layer and a hidden layer. The visible layer represents the input data, while the hidden
layer captures higher-level features or representations learned from the input. These layers
are interconnected by weights, and each node in one layer is connected to every node in the
other layer. Notably, there are no connections within layers, creating a ”restricted” connectivity
pattern, as seen in Figure 1.

Figure 1: The basic structure of an RBM (Chu et al. 2018), where hn and vm represent the hidden and visible
units respectively with associated bias vector an and bm. The weights corresponding to the interactions strengths
between visible and hidden units are denoted by wi j.

The connectivity pattern in RBMs reflects their bipartite structure, where nodes in the visible
layer are only connected to nodes in the hidden layer and vice versa. This restricted connectiv-
ity is the feature distinguishing Restricted Boltzmann Machines and Boltzmann Machines. It
simplifies the learning process and enables more efficient training compared to fully connected
networks. The absence of connections within layers reduces the model’s complexity, making it
computationally more tractable while still capturing intricate patterns in the data.

One key concept in understanding RBMs is the notion of energy. In the context of RBMs, the
energy of a particular configuration (assignment of values to visible and hidden units) is a mea-
sure of the compatibility of that configuration with the model. The energy is defined in terms of
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the weights and biases of the RBM. Lower energy configurations are more likely to occur, and
the learning process aims to adjust the weights and biases to minimize the energy of observed
data while at the same time maximizing the energy of unobserved data. This energy-based ap-
proach provides a probabilistic interpretation of RBMs, where the model assigns probabilities
to different configurations, allowing them to be used for tasks such as sampling and generating
new data.

2.2 Probabilistic Model

RBMs are inherently probabilistic models that leverage probability distributions to characterize
the relationships between visible and hidden units. The probability of a particular configuration
of visible and hidden units is expressed through a joint probability distribution. This distribu-
tion encapsulates the likelihood of observing a specific combination of states for both visible
and hidden layers.

The joint probability distribution over visible and hidden units is defined in terms of the Boltz-
mann distribution, introduced and widely used in the field of statistical physics (see for example
Kardar 2007 for an introduction). The probability Ppv,hq of a specified configuration is given
by:

Ppv,hq “
e´Epv,hq

Z
. (1)

The energy function Epv,hq plays a pivotal role in defining this joint probability distribution.
It measures the compatibility of a given configuration of visible units (v) and hidden units (h)
within the model. Mathematically, the function is defined as:

Epv,hq “ ´

Nv
ÿ

i“1

bivi ´

Nh
ÿ

j“1

a jh j ´

Nv
ÿ

i“1

Nh
ÿ

j“1

wi jvih j. (2)

Here Nv represents the number of visible units, Nh is the number of hidden units and wi j denotes
the weight between visible unit vi and h j. The values bi and a j correspond to the biases of
visible vi and hidden h j units, respectively. The parameters bi, a j and wi j are to be learned
from the visible data, in order to allow for the hidden nodes to replicate the patterns in the
training set. The normalization constant Z in Equation (1) ensures that the probabilities sum
up to 1 over all possible configurations. It is defined as the sum of the exponential of negative
energies over all possible visible and hidden unit configurations:

Z “
ÿ

v

ÿ

h

e´Epv,hq.

The Boltzmann distribution reflects the core probabilistic foundation of RBMs, where config-
urations with lower energy values are assigned higher probabilities, capturing the underlying
relationships within the data. This probability framework enables RBMs to model complex
distributions and serves as the basis for tasks such as sampling and generation. From the def-
inition (1) we can define the marginal probabilities over visible units only summing over all
possible hidden units configurations:

Ppvq “
ÿ

h

Ppv,hq. (3)
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This can be used, for example, to establish the probability to see a given visible nodes configura-
tion, regardless of the values taken by the hidden nodes. In addition, an important consequence
of Equation (1) is the simplifications it implies for the evaluation of the conditional probabili-
ties. Every two node in a layer of the network are independent, once we condition on the nodes
of the other layer. This is easily derived from the expression of the energy function (2), and
from the structure of the network illustrated in Figure 1: each node in e.g. the hidden layer can
be influenced only by the nodes in the visible layer. Conditioning on the latter, two nodes in the
hidden layer cannot have any influence on each other. This conditional independence implies
that the probability Ppv|hq factorizes over the visible nodes, and for each of them we have the
factor:

Ppvi “ 1|hq “ σ

¨

˝bi `

Nh
ÿ

j“1

wi jh j

˛

‚,

where σpxq is the logistic function σpxq “ 1
p1`e´xq

. This form of the conditional probability
will be crucial in the training procedure, described in the next section.

2.3 Training Procedure

In this section we focus on the selection of the energy parameters in Equation (2). Training a
RBM involves maximizing the log-likelihood of the observed data (or equivalently minimizing
the negative log-likelihood) in the space of parameters bi, a j and wi j. In the following we denote
the set of parameters collectively as Θ “

␣

bi,a j,wi j
(

, and introduce explicitly the parameter
dependence of the probability (1), Ppv,hq “ Ppv,h|Θq. From Equation (3) the log-likelihood
function pL q for visible data v is given by:

L pΘ|vq “ logPpv|Θq, (4)

and averaging over all the possible configurations in the training data for the visible nodes we
obtain:

L pΘq “
1

Nobs

ÿ

v
logPpv|Θq, (5)

where v is summed over all the configurations found in the training data, and Nobs is the number
of these observations. To maximize the log-likelihood function (5) we use the gradient of the
function (Hinton and Salakhutdinov 2006). Hence, evaluating the gradient of the log-likelihood
with respect to the parameters Θ is crucial for optimizing the RBM. It provides the direction in
which the parameters should be adjusted to increase the log-likelihood.

Note that the log-likelihood (4) can be written as the difference between the two terms:

L pΘ|vq “ log
ÿ

h

e´Epv,h,Θq
´ log

ÿ

v1,h1

e´Epv1,h1,Θq.

This implies that the gradient of (5) can be written as:

BL pΘq

Bθ
“ ´

1
Nobs

ÿ

v,h

Pph|v,Θq
BEpv,h,Θq

Bθ
`
ÿ

v1,h1

P
`

v1,h1,Θ
˘ BEpv1,h1,Θq

Bθ
.
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Finally, the last expression can be written as:

BL pΘq

Bθ
“ ´

B

BEpv,h,Θq

Bθ

F

data
`

B

BEpv,h,Θq

Bθ

F

model
,

where the first average x‚ydata is evaluated with the empirical distribution of visible nodes
configurations in the observed data, and the second x‚ymodel is obtained from the probability
distribution (1) defining the model. The challenge arises in computing these expectation values
exactly, because they involve the partition function Z, which requires summing over all possible
configurations of visible and hidden units. This summation is intractable due to the exponential
number of configurations, making the exact computation infeasible.

2.3.1 Contrastive Divergence

This is where Contrastive Divergence (CD) comes into play. Instead of computing the exact
expectations, CD introduces an efficient approximation. The primary idea is to approximate the
gradient of the log-likelihood function by comparing the model’s response to real data (positive
phase) and a “model” generated by Gibbs sampling (negative phase). It initializes the visible
layer with a training sample, performs Gibbs sampling for a few steps to create the “model”
average, and then computes the gradient using the positive phase (data) and negative phase
(model) expectations (see Hinton 2002; Hinton and Salakhutdinov 2006 for details). CD ex-
ploits the idea that after a few Gibbs sampling steps, the model sample becomes a reasonable
approximation of the true data distribution. The algorithm’s efficiency comes from the fact
that it avoids the need for exact sampling from the RBM distribution, making it computation-
ally more feasible for training large models. The CD algorithm can be broken down into the
following steps:

Initialization
Initialize the visible layer with a training sample (v) and compute the probabilities of the hidden
layer being activated:

Pph j “ 1|vq “ σ

˜

b j `

Nv
ÿ

i“1

viwi j

¸

.

We then sample binary values for the hidden layer using these probabilities to get the initial
hidden values, hp0q.

Negative Phase
Given the sampled hidden states from the initialization step, compute the probabilities of the
visible units being activated:

Ppvi “ 1|hp0q
q “ σ

˜

ai `

Nh
ÿ

i“1

hp0q

j wi j

¸

and sample binary values for the visible layer to get vp1q.

Positive Phase
Now given the sampled visible states vp1q, compute the probabilities of the hidden units being
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activated again

Pph j “ 1|vp0q
q “ σ

˜

b j `

Nv
ÿ

i“1

vp0q

i wi j

¸

and sample binary values for the hidden layer to get hp1q. Repeat the process, alternating
between updating visible and hidden units, for several steps to create a model sample.

Compute Gradients
After repeating the process k times, we can use the two sets of data pv,hp0qq and pvpkq,hpk`1qq

to approximate the two averages x‚ydata and x‚ymodel . As an example, to update the values of
the weights wi j we obtain:

∆wi j “ η
BL pΘq

Bwi j
“ η

`

xvih jydata ´ xvih jymodel
˘

.

The parameter η is the learning rate, which regulates the speed of convergence of the pro-
cess. By iteratively applying Gibbs sampling and computing these differences, CD efficiently
approximates the gradient of the log-likelihood, facilitating the training of RBMs on large
datasets. The evaluated gradient can finally be used to change the parameters of the model in
order to increase the likelihood of the training data and to better replicate the features of the
distribution under study. After the training procedure, the model can be used to generate new
data from the learned distribution using Equation (3).

2.4 Advantages and Challenges

RBMs prove adept at modeling intricate relationships and capturing high-dimensional depen-
dencies. One key strength lies in their capacity for representation learning, as RBMs au-
tonomously unveil hierarchical features when trained on unlabeled data (Decelle et al. 2023).
This is particularly valuable in scenarios where feature extraction poses challenges. Moreover,
the incorporation of non-linearity through the activation functions empowers RBMs to model
complex relationships, a trait crucial for tasks where linear models fall short.

RBMs also excel in dimensionality reduction, effectively distilling essential information from
high-dimensional datasets and mitigating the challenges associated with the curse of dimen-
sionality. Their generative modeling capability enables the creation of new samples similar to
the training data, proving advantageous in tasks such as image synthesis and recommendation
systems (Salakhutdinov et al. 2007). Notably, RBMs robustly handle missing data during both
training and inference, a practical feature for real-world datasets where incomplete information
is common.

Despite their merits, RBMs present certain challenges that have to be taken into account. No-
tably, the training of RBMs can be computationally demanding, particularly with large datasets
and deep architectures. The iterative nature of the contrastive divergence algorithm, commonly
used for training RBMs, can lead to slow convergence, making the training process resource-
intensive. Efficiently addressing these computational demands remains a focal point to enhance
the practicality of RBMs in real-world applications.

Another challenge lies in the sensitivity of RBMs to hyperparameters. Selecting appropriate
hyperparameter values is a non-trivial task, and suboptimal choices may result in poor model
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performance or hinder convergence during training. Balancing the learning rate, the number of
hidden units, and other hyperparameters is crucial, and a lack of clear guidelines adds complex-
ity to the model development process. While RBMs offer significant advantages with respect
to traditional BMs, addressing the mentioned challenges is an important step to maximize their
performance in various applications.

3 Quantum Boltzmann Machines

The motivation for integrating quantum mechanics into machine learning stems from the recog-
nition that certain computational problems, especially those involving complex optimization
and probabilistic modeling, can be addressed more efficiently using quantum principles. Quan-
tum mechanics enables the representation of information through new concepts like state su-
perpositions and quantum entanglement. In machine learning, in turn, tasks such as optimiza-
tion, matrix operations and sampling distributions often involve computationally hard prob-
lems. Quantum computing has the potential to provide speedup in these areas.

3.1 QBM Theory

In the classical RBM, the visible and hidden layers consist of classical bits (1s and 0s). If we
were to change this to the fundamental unit of quantum information (qubits or quantum bits),
we could now exploit the more powerful mathematical tools of quantum mechanics (Dirac
1930). Quantum mechanics employs matrices (operators) whose dimensionality corresponds
to the total number of potential states (2N), unlike conventional machine learning methods that
utilize vectors with a dimensionality equivalent to the number of variables (N). The quantum
analog of the energy function defined in Equation (2) is given by a 2N ˆ 2N matrix, called the
Hamiltonian of the system:

H “ ´

Nv
ÿ

i“1

Γiσ
x
vi

´

Nh
ÿ

j“1

b jσ
z
h j

´

Nv
ÿ

i“1

Nh
ÿ

j“1

wi jσ
z
vi

σ
z
h j
. (6)

Here, Γi, b j, wi j represents weights similar to the ones in classical RBMs. In this case the
dimensionality of the system N is given by the sum of the numbers of visible and hidden nodes:
N “ Nv ` Nh. The binary values vi and h j of the visible and hidden nodes in the classical RBM
are here supplanted by the 2N ˆ 2N matrices σ x

vi
, σ z

vi
and σ

z
h j

, defined as:

σ
x
vi

“

vi´1
hkkkkikkkkj

I b . . .b I bσx b

Nv´vi
hkkkkikkkkj

I b . . .b I b

Nh
hkkkkikkkkj

I b . . .b I,

σ
z
vi

“

vi´1
hkkkkikkkkj

I b . . .b I bσz b

Nv´vi
hkkkkikkkkj

I b . . .b I b

Nh
hkkkkikkkkj

I b . . .b I,

σ
z
h j

“

Nv
hkkkkikkkkj

I b . . .b I b

h j´1
hkkkkikkkkj

I b . . .b I bσz b

Nh´h j
hkkkkikkkkj

I b . . .b I .
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Here I is the identity matrix, and σx and σz are the Pauli-X and Pauli-Z matrices.1 The eigen-
states of the Hamiltonian (6) can be represented as linear combinations of the states |v,hy, where
v and h denote the combinations of eigenvalues of the matrices σ z

vi
and σ

z
h j

. Like in the RBM
case we define the associated probability distribution as:

ρ “
1
Z

e´H , (7)

where ρ is the 2N ˆ 2N matrix obtained by matrix exponentiation of H, and is called density
matrix.2 The normalization constant Z in (7) is given by Z “ Trre´Hs, the matrix trace of
the exponential e´H . The diagonal elements of ρ are the Boltzmann probabilities of the 2N

eigenstates of the Hamiltonian (6). From the density matrix ρ we can obtain the marginal
Boltzmann probabilities Pv for a given set of visible states vi as:

Pv “ TrrΛv ρs,

where Λv is the projection operator reducing ρ to the subspace specified by the visible state
v. Using the probabilities just defined we can obtain the log-likelihood, which for a given data
distribution pdatapvq and parameters Θ “

␣

Γi,b j,wi j
(

can be written as:

ℓpΘq “
ÿ

tvu

pdatapvq logTrrΛv ρ pΘqs, (8)

where
ř

tvu denotes the sum over all possible configurations of the eigenvalues of σ z
vi

.

3.2 Training a QBM

To train a QBM one would have to maximize the log likelihood function, which is achieved by
following the gradient of the function as for the classical RBM (Amin et al. 2018):

Bθ ℓpΘq “
ÿ

tvu

pdatapvq

ˆ

TrrΛv Bθ e´Hs

TrrΛv e´Hs
´

TrrBθ e´Hs

Trre´Hs

˙

. (9)

with Bθ ℓ “ Bℓ
Bθ

. Like in the classical RBM, the goal is to estimate the gradient efficiently by
sampling. For QBMs this is non trivial because Λv and H are matrices, and they don’t commute
with each other:

Λv H ‰ H Λv.

The second term on the right hand side of Equation (9) can be simplified to:

TrrBθ e´Hs

Trre´Hs
“ ´Tr rρ Bθ Hs ,

which can be computed by sampling as in the classical case. The first term in Equation (9)
however is equal to:

TrrΛvBθ e´Hs

TrrΛve´Hs
“

ż 1

0
Bt

TrrΛve´tHBθ He´p1´tqHs

TrrΛve´Hs
,

1The use of the symbol σ for the Pauli matrices is conventional in quantum mechanics, and it is not to be
confused with the activation function introduced in the previous section.

2We can define matrix exponentiation through Taylor expansion e´H “
ř8

k“0
1
k! p´Hqk. For a diagonal Hamil-

tonian, e´H is a diagonal matrix with its 2N diagonal elements corresponding to the energy states e´Ez .
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and cannot be computed as efficiently. This makes training a QBM more computationally ex-
pensive than training an RBM. A solution to this problem consists in introducing an appropriate
lower bound to the log-likelihood function, and maximizing it instead of the original function
(see Amin et al. (2018) for more details).

3.2.1 Bound-Based QBM

We can define a lower bound for the probabilities using the Golden-Thompson inequality
(Golden 1965; Thompson 1965):

TrreAeB
s ě TrreA`B

s,

which holds for any Hermitian matrices A and B, as is the case in this application (obviously
the inequality reduces to an identity when A and B commute). We can therefore introduce a
lower bound to the log-likelihood function (8) as:

ℓpΘq “
ÿ

tvu

pdatapvq logTrrΛv ρs ě
ÿ

tvu

pdatapvq log
TrrelogΛv´Hs

Trre´Hs
. (10)

Introducing the new Hamiltonian Hv “ H ´ logΛv, we can write the right-hand side of Equation
(10) as:

ℓ̃pΘq “
ÿ

tvu

pdatapvq log
Trre´Hvs

Trre´Hs
.

This expression is called clamped log-likelihood function, because the form of the Hamiltonian
Hv implies a null probability whenever the visible nodes configuration is different from v. When
calculating the gradient of this function, we get:

Bθ ℓ̃pΘq “ ´
ÿ

tvu

pdatapvq

ˆ

Trre´HvBθ Hvs

Trre´Hvs
´

Trre´HBθ Hs

Trre´Hs

˙

,

which in turn, defining the clamped density matrix ρv “ e´Hv{Tr
“

e´Hv
‰

, can be simplified as:

Bθ ℓ̃pΘq “ Tr rρ Bθ Hs ´
ÿ

tvu

pdatapvqTr rρv Bθ Hvs .

The explicit gradients of ℓ̃pΘq with respect to the function parameters are given by:

BΓi ℓ̃pΘq “
ÿ

tvu

pdatapvqTr
“

ρv σ
x
vi

‰

´ Tr
“

ρ σ
x
vi

‰

. (11)

Bb j ℓ̃pΘq “
ÿ

tvu

pdatapvqTr
”

ρv σ
z
h j

ı

´ Tr
”

ρ σ
z
h j

ı

. (12)

Bwih ℓ̃pΘq “
ÿ

tvu

pdatapvqTr
”

ρv σ
z
vi

σ
z
h j

ı

´ Tr
”

ρ σ
z
vi

σ
z
h j

ı

. (13)

Equations (12) and (13) can be easily estimated by sampling from the probability distributions
obtained from the density matrices ρ and ρv, and these estimations can be used to evaluate the
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related components of the function ℓ̃pΘq. The results obtained from this procedure are shown
to be compatible with the evaluation of the full gradient (9) in controllable situations, thus we
obtained a viable algorithm to maximize the log-likelihood with respect to the two sets of pa-
rameters b j and wi j (see Amin et al. 2018). The evaluation of the simplified Equation (11),
however, does not approximate the associated components of the true gradient. Following the
gradient defined with Equation (11) leads to parameters configurations in which Γi “ 0 for all i,
which is an artifact of the lower-bound maximization. For this reason, the values of Γi are usu-
ally treated as hyperparameters, or trained maximizing the full log-likelihood function. QBMs
are trained on machines called quantum annealers, specialized quantum computers designed
to solve optimization problems by finding the minimum energy state of a system, typically
mapped to a Hamiltonian of the form (6). They operate through quantum annealing, a pro-
cess that leverages quantum tunneling to explore the energy landscape of the system (Falco
et al. 1988; Apolloni et al. 1989; Kadowaki and Nishimori 1998). We use a D-Wave quantum
annealer (Boothby et al. 2019; Boothby et al. 2021). Finally, once the training procedure is
completed, the QBM can be used similarly to the RBM to generate new data.

4 Classical Benchmark

As explained in the introduction, suitable applications for demonstrating the value of QBMs
arise in settings where data are limited, such as the rare events in the tails of a distribution. A
motivation for the focus on this setting is the widespread, yet often inappropriate, assumption
of normality. If the true data-generating process exhibits heavy tails then relying on normality
can lead to a severe underestimation of the likelihood and impact of extreme events. Tail events,
however, are rare. As a result, it is often difficult to gather enough data to reject the assumption
of normality and to accurately describe the sporadic, large outliers in the distribution. Such
situations frequently arise in macroeconomic contexts, where variables like GDP are reported
infrequently, and they can lead to high estimation uncertainty. These considerations motivate
our empirical focus on heavy-tailed distributions, where QBM-generated synthetic observations
can help improve the robustness of inference.

A distribution ρX pxq is said to have a (right) heavy tail if it decreases more slowly than any
exponential. Defining the complementary cumulative distribution function as:

FX pxq “

ż 8

x
ρX pyqdy.

We say that the distribution is heavy-tailed if:

limxÑ8FX pxqetx
“ 8 @t ą 0.

For a large class of heavy-tailed distributions only a finite number of moments are bounded.
This is true in particular for all distributions having a right tail decaying as a power law:

ρX pxq „ x´pα`1q , α ą 0.

In this case, the largest integer smaller than α indicates the maximum finite moment of the
distribution.
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In this section, we directly compare the estimation performance of QBM and RBM models
when applied to a common heavy-tailed distribution. We focus on the Student-t distribution
with 5 degrees of freedom, for which only the first four moments exist. For finite sample
sizes, this implies that the estimation of higher-order moments becomes unreliable. Moreover,
although the fourth moment is theoretically finite, its estimation can exhibit substantial uncer-
tainty in most realistic sample sizes, as we will demonstrate.

The comparison is performed on small Student-t samples of 100 observations. For each sample
of 100 observations, we first compute the first four moments of the distribution, denoted in
Table 1 as x, x2, x3, and x4. The same sample is then used to train both a RBM and a QBM. Once
trained, each model is used to generate a synthetic dataset consisting of 10,000 observations.
These synthetic samples are then used to re-estimate the first four moments of the distribution.
The estimates obtained from the QBM- and RBM-generated data are compared against the
original sample estimates as well as the true theoretical moments of the distribution. This
repeated sampling procedure, performed over 300 independent samples, allows us to evaluate
the consistency, bias, and variability of each method in recovering key distributional features
from limited data.3 In particular, the setup highlights how the accuracy of moment estimation
deteriorates as the order of the moment increases, and how generative models can help mitigate
this issue under small-sample conditions.

The choice of an RBM as the classical benchmark is straightforward, as the QBM is the im-
mediate quantum extension of the RBM. Both RBM and QBM models can be used to model
distributions on finite sets. As such, they need a regularization of the distribution domain: we
have to select a finite range of variation of the analyzed data, and discretize the domain. While
the latter operation has negligible effects on the resulting distribution, the clipping of the range
of variation can have sizable results for a heavy-tailed distribution as a Student-t. To minimize
the effects of this choice, we select the range of variation r´10,10s, much larger than the typi-
cal domain for our selected sample size. With this selected range, the probability for a sample
point to fall outside of this interval is less than 2 ˆ 10´4.

Figure 2 shows an example of a simulated and augmented sample. With these cutoffs, the
Student-t distribution with 5 degrees of freedom has true values of zero for the first and third
moments. The true value of the second moment is equal4 to 1.64 and the fourth moment equal
to 15.96. For samples composed of 10.000 data points, the standard deviation of the second
moment is 0.04, while the standard deviation of the fourth moment is 1.52.

The results for the sample data, RBM model and QBM model are shown in Table 1. As we
anticipated in the beginning of the section, while the first and second moments of the distri-
bution are reasonably stable for the original sample size of 100 points, the oscillations in the
fourth moment are of the same order of magnitude of the true value itself. This uncertainty gets
amplified when training the generative models. We find, however, a much better estimation
using the QBM with respect to the RBM.

As we can see from the table, the estimation performances of the RBM model start degrading

3In order to make a meaningful comparison, we first optimize the hyper-parameters set for the RBM. We
optimize over an independent set of 1000 samples, using as objective functions the L1 and L2 distances between
the sample distribution and the synthetic one (both distances result in a similar estimation for the parameters).

4These values are obviously lower than for the standard Student-t (5) distribution, given the artificial cutoff
on the tail values.
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Figure 2: Augmenting Student-t (5) data
This figure shows an example of augmenting data sampled from a Student-t distribution with 5 degrees of freedom.
The left panel shows the histogram of a draw of n “ 100 observations. We have discretized the data by creating
equally sized bins of size p10`10q{p28q, as the support is limited between -10 and 10. After training the QBM on
this sample, we generate 100 additional QBM simulated observations and add them to the original data, presented
in the right panel.

Table 1: Simulation results

Sample RBM QBM

Estimator Average St. dev. Average St. dev. Corr Average St. dev. Corr
x 0.01 0.14 ´0.21 0.45 0.21 ´0.08 0.11 ´0.58
x2 1.62 0.33 13.83 2.51 0.16 3.99 0.44 0.23
x3 0.19 2.23 ´12.54 26.66 0.65 ´0.02 1.64 ´0.68
x4 15.63 13.42 745.27 169.23 0.15 188.28 23.07 ´0.02

This table display the first four moments of the empirical distribution generated from the DGP, the RBM model
and QBM model. We report the mean and standard deviation for the moments over the 300 samples drawn from
the Student-t (5) distribution. Correlations between the terms ε

sample
true and ε

synt
sample for RBM and QBM data.

already from the second moment. For the first moment we obtain an average value which is
of the same order of magnitude of the sample standard deviation, which implies we would
not have a significantly worse estimation using the RBM generated data. However, for the
second, third and fourth moment we obtain averages and standard deviations which are orders
of magnitudes larger than the sample (and QBM) ones. This implies that, in trying to augment
the sample data with synthetic RBM generated ones, we would introduce significant distortions
in the data, and alter the statistical properties of the original distribution.

For the QBM-generated data, the results are more encouraging. The first moment exhibits
only a small bias, with a standard deviation even lower than that of the sample-based estimate.
The second moment shows a slight positive bias; however, both its average value and standard
deviation are of the same order of magnitude as those of the sample. The estimation of the
third moment also improves relative to the sample data, both in terms of average value and
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dispersion. This clear enhancement can be attributed to two key factors. First, the synthetic
data are generated starting from a symmetric distribution over a symmetric interval. Second,
this symmetry is not broken by the random fluctuations in the sample. As a result, with a
sufficiently large number of synthetic observations, the average of any odd moment tends to
zero. This property would not hold if the QBM model were overfitting to the outlier values in
the sample, as we observe with the RBM generated data.

In this regard, the QBM model performs particularly well: it efficiently downweights the influ-
ence of outlier observations and more reliably captures the core structure of the distribution.5

For the fourth moment, we begin to observe a larger bias, although the standard deviation of
the QBM-based estimate remains roughly comparable to that of the sample-based estimate.
Overall, this comparison suggests that when synthetic data are used to augment a small sample,
the QBM model offers a significantly more accurate replication of the underlying distribution’s
statistical properties. In contrast, the RBM tends to introduce distortions that may be unaccept-
able, even when compensated by a much larger number of generated data points.

In addition to the absolute performance of the estimations, it is instructive to consider the
correlation between the errors of the sample estimators and the synthetic ones. More precisely,
as shown in Appendix B, let ε

sample
true denote the errors between the sample estimators and the

true values, and let ε
synt
sample denote the errors between the synthetic estimators and the sample

ones. The sign of the correlation between ε
sample
true and ε

synt
sample directly impacts the quality of the

estimations of the true values based on synthetic data.

As already mentioned, one of the reasons the QBM estimators are much closer to the real value
than the RBM ones, is that the RBM shows the tendency to learn the random fluctuations in
the sample. This translates in a positive correlation between ε

sample
true and ε

synt
sample. The QBM

estimators, on the other hand, manage to neglect the fluctuations more often, generating a
negative correlation between the two error terms.

As shown in the last column of Table 1, for both the first and third moment we obtain a large
negative correlation of the error terms between sample and true data, and synthetic and sample
data. To understand why this happens, it is sufficient to realize that whenever a sample presents,
for example, a positive large outlier, the error term ε

sample
true will be positive. However, if the

generative model does not learn to replicate this outlier, the error ε
synt
sample between the synthetic

estimation and the sample one will typically be negative. As shown in the fifth column of Table
1, the RBM estimations exhibit positive correlations in the error terms across all distribution
moments. This suggests that when an outlier appears in the sample, it is likely to be replicated
in the synthetic data as well.

5 Real Data: Risk Assessment of Young Firms

The risk assessment of financial investments forms an important part of investors’ capital al-
location decision and the financial stability regulatory framework. Value-at-Risk (VaR) has

5As a robustness check, we repeated the same experiment after introducing a random shift in the center of the
distribution to remove the advantage conferred by symmetry. The results, presented in Appendix A, confirm the
findings reported here.
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become a cornerstone of both financial risk management and regulatory frameworks. It pro-
vides a probabilistic estimate of the potential loss in value of a portfolio over a defined time
horizon at a given confidence level, offering a standardized approach to assessing market risk
(Jorion 2007). Regulatory bodies such as the Basel Committee on Banking Supervision have
incorporated VaR, and later Expected Shortfall (ES) (Artzner et al. 1999), into capital adequacy
requirements, requiring banks to hold capital against potential losses implied by their internal
risk models (Basel Committee on Banking Supervision 2011).

Estimating these types of measures accurately becomes particularly challenging in the pres-
ence of small samples, which are common when working with low-frequency data, short-lived
securities, or emerging asset classes. Small samples exacerbate the inherent trade-off between
bias and variance in risk estimation and limit the ability to reliably infer tail behavior, to which
VaR and ES are especially sensitive (Danielsson and Vries 1997). Parametric approaches, such
as those assuming normality or GARCH-based dynamics, may suffer from model misspec-
ification, while non-parametric methods like historical simulation become unreliable due to
insufficient observations in the tail (Pritsker 2006).

To address this, we leverage the QBM to generate synthetic data that augments the existing
limited observations. Specifically, we train the QBM using the first year of returns data from
the stock exchange and use it to generate additional synthetic returns. By augmenting the
original dataset with these QBM-synthesized observations, we aim to improve the accuracy of
various risk measures.

5.1 Stock Return Data

The stock market data used in this study is obtained from the Centre for Research in Security
Prices (CRSP). The CRSP database provides individual stock data spanning December 31,
1925, to December 31, 2015, and includes information from the NYSE, AMEX, NASDAQ,
and NYSE Arca exchanges. The prices adjusted for stock splits and dividend payouts are used
to then calculate the returns. We use these returns to calculate various risk metrics from the risk
management literature. We exclude stocks with fewer than 60 months of data. Stocks with an
average price below $5 are also excluded as is customary in the finance literature. Furthermore,
due to computational limitations we have restricted our sample to the 400 stocks with the lowest
unique security identifier (PERMNO).6

5.2 Risk Assessment

The risk measures we employ characterize the return distribution in terms of both overall un-
certainty and exposure to undesirable outcomes. In financial risk management, variance and
kurtosis are commonly used to quantify uncertainty, while downside risk is typically assessed
using skewness, VaR, ES, and the tail index for the left tail of the return distribution. For formal
definitions of these risk measures, see Appendix C; for further discussion, refer to Danielsson
(2011).

6We disregard six stocks with more than 10 zero return days in the first 200 days (stale prices).
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Figure 3: Augmenting 1 year firm data with QBM data
This figure shows an example of augmenting a firms first year of data with QBM synthesized data. The left panel
shows the histogram of the first year of data. The centre panel shows the first year firm data augmented with 400
QBM synthesized data. The panel to the right shows the five year sample data. We have discretized the data by
creating equally sized bins of size p0.5 ` 0.5q{p28q, as the support is limited between -50% and 50% returns.

These measures form the basis of our empirical framework, which evaluates whether QBM-
generated data improve the ability to explain a firm’s longer sample (five year) risk profile.
We focus on the five-year horizon because it incorporates more data than short-term estimates,
yielding more stable and reliable risk estimate. At the same time, it remains short enough to
avoid capturing structural shifts in the firm’s fundamentals that could occur over longer hori-
zons. A graphical representation can be seen in Figure 3. To assess the predictive contribution
of QBM, we compare its performance against a RBM. This comparison is particularly relevant
from a quantum computing perspective, as it illustrates the potential for quantum generative
models to improve risk estimation over classical models, especially in data-constrained envi-
ronments where traditional methods may underperform.

Figure 4 provides a graphical representation of our analysis for the VaR measured at 5%. The
upper panel shows a scatter plot of the VaR of the firms extracted from the first year, VaR1y

i ,
versus the VaR from the five year sample for the same firm, VaR1´5y

i . The lower panel shows
the scatter plot of the same 5 year sample on the y-axis, against the difference between the
measure extracted from the 1 year sample augmented with the QBM data and the VaR with the
original one year sample, ∆VaR1y,QBM

i . The difference captures the added value of the QBM
augmented data. The positive relationship in the lower panel shows that the ∆VaR1y,QBM

i helps
to better predict the larger sample risk measure.

To further analyze this relationship we setup the following regression framework:

Risk1´5y
i “ c ` β1Risk1y

i ` β2∆Risk1y,QBM
i ` εi. (14)

Here, Risk1´5y
i denotes a given risk measure for firm i, calculated over the first five years of

its returns. The term Risk1y
i reflects the same measure based only on the first year of data.

Furthermore, ∆Risk1y,QBM
i captures the difference between the risk measure estimated from
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Figure 4: Value-at-Risk prediction - Sample and added value augmentation
The upper panel of this figure shows the scatter plot of the VaR1y

i measurement from the first year sample period
against the VaR1´5y

i measures for 394 US stocks. The lower panel shows the scatter plot of ∆VaR1y,QBM
i against

VaR1´5y
i . We use the CRSP database to obtain time series return data for these firms. To train the QBM model we

first need to discretize the data, by creating 256 equally sized buckets between returns between -50% and +50%.
Returns beyond this range are winsorized to the lowest or highest bin. We disregard stocks with more than 10 zero
return days in the first 200 days (stale prices). For the augmentation we add 400 synthesized observations to the
original 200 sample observations.

QBM-augmented data and that from the original one-year sample. Our primary interest lies
in the estimate for the coefficient β2, where a positive significant value indicates whether the
additional information provided by QBM-generated observations improves the prediction of
long sample risk.

Table 2 summarizes the results of the regression analysis, showing that the predictability of
risk measures varies slightly across different metrics.7 The first row highlights that using risk
measures extracted from the one year ordinary sample significantly predicts their five-year
counterparts in the expected positive direction. In the second row, we report the coefficient
estimates of our variables of interest, the information added by the QBM synthesized data. The
two uncertainty measures, standard deviation and kurtosis, benefit from the augmentation of
QBM-synthesized data, as indicated by their positive and significant coefficients. The slightly
lower significance level for the standard deviation is intuitive; since the standard deviation is

7Tables 4 and 5 in Appendix D present the results of augmenting the data with 200 and 600 synthesized
observations, respectively. The results are broadly similar, with the exception of the tail index estimate. For the
sample with 200 synthesized observations, the estimate is in the expected direction but statistically insignificant.
In contrast, with 600 synthesized observations, the estimate becomes highly significant, highlighting the need for
a larger synthesized sample to reliably estimate this data-intensive metric.
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Table 2: Prediction large sample risk with small sample risk measures

QBM

st. dev. VaR5% ES5% skew kurtosis tail index

Risk1y 0.86˚˚˚ 0.72˚˚˚ 0.81˚˚˚ 0.67˚˚˚ 2.86˚˚˚ 0.60˚˚˚

(0.02) (0.03) (0.03) (0.08) (0.28) (0.03)

∆Risk1y,QBM 0.13˚˚ 0.38˚˚˚ 0.07˚˚ ´0.04 0.34˚˚˚ 0.05˚˚

(0.05) (0.06) (0.03) (0.03) (0.09) (0.02)

Constant ´0.89 34.48˚˚˚ 24.84˚˚˚ 0.06 ´16.74˚˚˚ 0.01˚˚

(0.55) (3.52) (3.07) (0.07) (5.43) (0.002)

R2 0.77 0.77 0.73 0.17 0.21 0.51

RBM

Risk1y 0.82˚˚˚ 0.82˚˚˚ 0.78˚˚˚ 0.69˚˚˚ 2.70˚˚˚ 0.60˚˚˚

(0.02) (0.03) (0.03) (0.10) (0.75) (0.03)

∆Risk1y,RBM ´0.02 ´0.01˚ ´0.02˚˚ 0.0004 0.28 0.01
(0.01) (0.005) (0.01) (0.09) (0.63) (0.01)

Constant 1.01˚˚ 21.81˚˚˚ 24.28˚˚˚ 0.11 ´1.65 0.01˚˚˚

(0.39) (3.00) (3.02) (0.07) (7.30) (0.002)
R2 0.77 0.74 0.73 0.17 0.18 0.50
Observations 394 394 391 394 394 394

This table displays the results of the regression analysis of Equation (14) to asses the increased accuracy of risk
measures for young firms (evaluated with data from approximately one year after the initial public offering). We
use the CRSP database to obtain time series return data for these firms. The independent variables for each column
are the risk metrics calculated for the first year of a firms listing (Risk1y). The second risk measure (∆Risk1y,QBM)
is the difference between Risk1y and the risk measure extracted from the sample data augmented with the QBM
synthesized data. The dependent variable is the same metric on an extended sample of the first 5 years after a firms
listing. The second panel displays the results of a similar excercise, with the difference being that the synthesized
data comes from the RBM. For the analysis we discretize the data by creating 256 equally sized buckets between
returns between -50% and +50%. We disregard stocks with more than 10 zero return days in the first 200 days
(stale prices). We add 400 synthesized observations to the original 200 sample observations for the augmented
sample. The stars that indicate the significance level are ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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less sensitive to tail observations, it is expected to be well estimated even in relatively small
samples. In contrast, kurtosis, which captures the fourth moment of the distribution, is highly
sensitive to tail observations and is therefore expected to benefit the most from additional data.

The measures focused on characterizing left-tail behavior, excluding skewness, are positive and
statistically significant in predicting the large-sample risk measures.8 While the short-sample
estimates themselves are informative of the longer-sample counterparts, the same predictive
property does not hold uniformly for the QBM-augmented estimates. However, metrics that
rely exclusively on left-tail data do improve with QBM-based augmentation. This is expected,
as these measures are particularly sensitive to rare observations and thus benefit the most from
an expanded sample.

The variation in significance across the 5% VaR, ES, and the left-tail index can be partly ex-
plained by the limitations of Boltzmann Machines. Extending the distribution beyond the range
observed in the original data, without imposing strong parametric assumptions, is inherently
challenging. Among these three measures, the 5% VaR is the least reliant on data beyond the
observed range, making it more robust to synthetic augmentation. In contrast, both ES and the
tail index depend more heavily on extrapolated tail behavior, which leads to lower significance
levels compared to the 5% VaR.

In the lower panel, we contrast the QBM results with those from the RBM. The RBM struggles
to add significant information to the one-year sample, with most coefficients being insignificant.
While the VaR and ES are significant, they have the wrong sign. This aligns with the simulation
results, where the QBM consistently outperforms its classical counterpart.

6 Conclusions

This paper explores the potential of Quantum Boltzmann Machines (QBMs) as generative mod-
els for improving risk estimation in data-scarce environments. Compared to classical Restricted
Boltzmann Machines (RBMs), QBMs offer a more flexible framework that can better approx-
imate complex, heavy-tailed distributions when observations are limited. Our results suggest
that even in constrained settings, QBMs can add useful information to small samples, enhanc-
ing the estimation of risk measures that are typically difficult to assess with limited data.

We apply this framework to a financial setting, focusing on risk assessment for newly listed
firms using return data from the CRSP database. By augmenting short return samples with
QBM-generated data, we show that estimates of long-term risk measures, particularly those
sensitive to tail behavior, such as value-at-risk, expected shortfall, and kurtosis, improve mean-
ingfully. In contrast, RBM-augmented samples do not provide the same level of predictive
enhancement. These findings suggest that QBMs can offer practical benefits in financial appli-
cations where robust risk estimation is needed despite limited historical data.

It is important to note that the current generation of quantum hardware still imposes limits on
the training and scalability of QBMs. Nonetheless, as quantum computing technology contin-

8As an alternative, skewness is measured using the robust coefficient of asymmetry proposed by Hinkley
(1975) and applied in Conrad et al. (2013). The results remain insignificant when asymmetry is measured using
the 25% and 75% quantiles.
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ues to evolve, the relative advantage of QBMs over classical models is expected to grow. This
makes QBMs a potential tool for financial modeling, particularly in applications where data
scarcity is a fundamental constraint. By leveraging quantum mechanical properties to better
capture distributional complexity, QBMs represent a promising step in the direction of a more
robust and accurate financial risk assessment.
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Salomon, and C. Linnhoff-Popien (2024). “Exploring Unsupervised Anomaly Detection
with Quantum Boltzmann Machines in Fraud Detection”. In: Proceedings of the 16th In-
ternational Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and
Technology Publications, pp. 177–185.

Thompson, C. J. (1965). “Inequality with Applications in Statistical Mechanics”. In: Journal
of Mathematical Physics 6, pp. 1812–1813.
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Appendix A Estimating non-symmetric distributions

As we described in Section 4, estimating a symmetric distribution on a symmetric interval can
introduce spurious negative correlations between the errors made with the sample estimations
of the true distributions and the synthetic estimations of the sample distributions. This in turn
enhances the estimation of the moments of the true distributions with respect to the fully general
setting.

For this reason, here we replicate the simulated estimation study of section 4 with a moving
true distribution. We keep the estimation interval fixed at r´10,10s, but add a random shift
to the distribution center; in other words, in each simulation run the true distribution is given
by a Student-t with 5 degrees of freedom for the variable px ´ sq, with s a random variable
uniformly distributed between r´10,10s. For each simulation run, we first extract a value for
s, then extract a large sample from a Student-t (5) distribution centered in px ´ sq, and finally
we keep only 100 of the sample points falling in the interval r´10,10s. In this way we are able
to generate a sample of true (and sample) distributions which are not centered in the domain of
the estimated variables, in order to cancel the enhancing effects of symmetry in the estimation
process. A drawback of this procedure is that the true values of the distribution moments change
between the runs, hence the only significant measurements of the estimation performance are
the error terms between QBM and RBM estimation on one side, and sample and true values on
the other (as opposed to the situation for the fixed true distribution, in which it was meaningful
to compare the averages and standard deviations of the estimated moments). In Table 3 we
show the comparison results for the new estimation procedure.

Table 3: Comparison of RBM and QBM Moving Averages

RBM with moving mean QBM with moving mean

ε
sample
true ε

synt
true ε

synt
sample ε

sample
true ε

synt
true ε

synt
sample

x 0.13 0.60 0.57 0.13 0.42 0.41
x2 1.29 6.83 6.70 1.29 2.66 2.43
x3 13.33 49.82 47.65 13.33 20.93 17.23
x4 135.55 582.85 565.61 135.55 243.20 211.18

RBM to QBM comparison for moving true distributions. ε
sample
true is the root mean squared error between the sample

estimation of the moments and the true values (identical in the RBM and QBM cases). ε
synt
true and ε

synt
sample are,

respectively, the root mean squared error between the synthetic estimations and the true values and the synthetic
estimations and the sample ones. As can be seen from the table, most of the error in the estimations of the true
values come from the inaccuracy of the synthetic estimation of the sample distributions.

The results of Section 4 are confirmed by this new procedure: the estimation errors with the
QBM model are substantially lower than with the RBM model, and are of the same order of
magnitude of the errors between the sample and true distributions. The correlations terms,
while playing a smaller role in this setting, are still negative for the QBM estimation errors:
they are approximately equal to ´8% for the first, second and third moments, and closer to
´7% for the fourth moment. The RBM estimation errors, on the other hand, present small
positive correlation.
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Appendix B Relevance of correlation terms

In Section 4 we described the importance of the correlation terms between the error terms
ε

sample
true and ε

synt
sample in the performance of the estimation of the true distribution using synthetic

data. In this appendix we want to derive the precise role these terms play in the estimation
results. Our estimation of a statistics θ̂ consists of a two-step process. First, we obtain a
sample, typically of small size, extracted from the true distribution. We use this sample to train
a generative model, from which we extract an arbitrarily large number of new data points. Here
we are interested in studying the relevant factors influencing the magnitude of the mean square
error, MSEpθ̂ q, between the estimator evaluated on the synthetic data, and the true value. With
a simple variance decomposition we obtain:

MSEpθ̂ q “ Erpθ̂synt ´ θtrueq
2
s

“ Erpε
synt
sampleq

2
s `Erpε

sample
true q

2
s ` 2Erε

synt
sample ε

sample
true s (15)

where
ε

synt
sample “ pθ̂synt ´ θ̂sampleq,

ε
sample
true “ pθ̂sample ´ θtrueq,

θtrue is the true value of the estimator, θ̂sample and θ̂synt are the estimators evaluated with the
different sets of data, and θ̂ “ θ̂synt.

Whenever the covariance term in Equation (15) is null, we see that the best estimation is per-
formed when the error between synthetic data and sample data is minimized, and the quality
of the estimation is at best as good as the sample one. If, however, as we saw in Section 4 the
covariance term is negative, we can obtain an estimation of the true value of θtrue better than
the one available with sample data alone.

Appendix C Risk measures

In this section we shortly discuss the risk measures we extract from the financial data. Consider
a series of return data R1,R2, ...,Rn. The sorted sample, i.e., order statistics, can be represented
as

maxpR1, ...,Rnq “ Rpn,nq ě Rpn´1,nq ě ... ě Rp1,nq “ minpR1, ...,Rnq .

From the order-statistics based on the returns Rp j,nq we can define the following risk measures:

Skewness “

E
”

pR ´ EpRqq
3
ı

E
”

pR ´ EpRqq
2
ı3{2 “

n
ř

j“1

ˆ

Rp j,nq ´ 1
n

n
ř

k“1
Rpk,nq

˙3

˜

n
ř

j“1

ˆ

Rp j,nq ´ 1
n

n
ř

k“1
Rpk,nq

˙2
¸3{2
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and

Kurtosis “

E
”

pR ´ EpRqq
4
ı

E
”

pR ´ EpRqq
2
ı2 “

n
ř

j“1

ˆ

Rp j,nq ´ 1
n

n
ř

k“1
Rpk,nq

˙4

˜

n
ř

j“1

ˆ

Rp j,nq ´ 1
n

n
ř

k“1
Rpk,nq

˙2
¸2 .

In the financial risk literature and in many of the financial institutions regulatory frameworks
the VaR forms an important assessment tool to gauge the level of risk. The VaR estimates the
potential loss an investment portfolio may incur over a specific period, given a certain level of
confidence.

VaRp “ ´Rprnps,nq

where rnps is the integer part of np. Due to the need to better characterize the shape of the
distribution beyond the VaR quantile, financial regulators also adopted the conditional tail ex-
pectation, or expected shortfall:

ESp “ ´ErR|R ă ´VaRs “ ´
1

rnps

rnps
ÿ

j“1

Rp j,nq.

As stated in the main text, an important statistic to characterize the risk of a stock is the thick-
ness of the tails of the distribution. The tail index α provides such a measure, as moments only
exist up to α , i.e., E | Xi |pă 8 only for p ă α . A decrease in α gives a heavier tail. To estimate
the tail index α , the most popular tool is the Hill estimator (Hill 1975):

1
pαk

“
1
k

k´1
ÿ

i“0

`

log
`

R˚
n´i,n

˘

´ log
`

R˚
n´k,n

˘˘

,

where k is the number of upper-order statistics used in the estimation of α . Furthermore, we
are interested in the left tail and therefore R˚

p j,nq
“ ´Rp j,nq.
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Appendix D Tables

Table 4: Prediction large sample risk measures (200 synthesized observations)

QBM

st. dev. VaR5% ES5% skew kurtosis tail index

Risk1y 0.85˚˚˚ 0.77˚˚˚ 0.81˚˚˚ 0.69˚˚˚ 2.72˚˚˚ 0.59˚˚˚

(0.02) (0.03) (0.03) (0.08) (0.27) (0.03)

∆Risk1y,QBM 0.07˚˚ 0.36˚˚˚ 0.05˚˚ ´0.01 0.24˚˚˚ 0.02
(0.03) (0.07) (0.02) (0.02) (0.06) (0.02)

Constant ´0.09 29.29˚˚˚ 23.60˚˚˚ 0.10 ´14.06˚˚˚ 0.01˚˚˚

(0.32) (3.34) (2.99) (0.06) (4.69) (0.002)

R2 0.77 0.76 0.72 0.17 0.21 0.51

RBM

Risk1y 0.82˚˚˚ 0.83˚˚˚ 0.79˚˚˚ 0.68˚˚˚ 2.74˚˚˚ 0.58˚˚˚

(0.03) (0.03) (0.03) (0.09) (0.57) (0.03)

∆Risk1y,RBM ´0.02 ´0.005 ´0.02˚˚ ´0.02 0.30 ´0.01
(0.01) (0.004) (0.01) (0.07) (0.44) (0.01)

Constant 0.94˚˚ 21.30˚˚˚ 24.00˚˚˚ 0.10 ´2.88 0.01˚˚˚

(0.38) (2.98) (2.99) (0.07) (6.74) (0.002)

R2 0.77 0.74 0.73 0.17 0.18 0.50

This table displays the results of the regression analysis of Equation (14) to asses the increased accuracy of risk
measures for young firms (evaluated with data from approximately one year after the initial public offering). We
use the CRSP database to obtain time series return data for these firms. The independent variables for each column
are the risk metrics calculated for the first year of a firms listing (Risk1y). The second risk measure (∆Risk1y,QBM)
is the difference between Risk1y and the risk measure extracted from the sample data augmented with the QBM
synthesized data. The dependent variable is the same metric on an extended sample of the first 5 years after a firms
listing. The second panel displays the results of a similar excercise, with the difference being that the synthesized
data comes from the RBM. For the analysis we discretize the data by creating 256 equally sized buckets between
returns between -50% and +50%. We disregard stocks with more than 10 zero return days in the first 200 days
(stale prices). We add 200 synthesized observations to the original 200 sample observations for the augmented
sample. The stars that indicate the significance level are ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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Table 5: Prediction large sample risk measures (600 synthesized observations)

QBM

st. dev. VaR5% ES5% skew kurtosis tail index

Risk1y 0.87˚˚˚ 0.71˚˚˚ 0.80˚˚˚ 0.65˚˚˚ 2.96˚˚˚ 0.60˚˚˚

(0.02) (0.03) (0.03) (0.08) (0.29) (0.03)

∆Risk1y,QBM 0.23˚˚˚ 0.40˚˚˚ 0.11˚˚˚ ´0.07˚ 0.41˚˚˚ 0.07˚˚˚

(0.06) (0.06) (0.03) (0.04) (0.09) (0.02)

Constant ´1.90˚˚˚ 36.22˚˚˚ 26.15˚˚˚ 0.01 ´19.66˚˚˚ 0.003
(0.65) (3.53) (3.13) (0.08) (5.66) (0.003)

R2 0.77 0.77 0.73 0.17 0.21 0.51

RBM

Risk1y 0.82˚˚˚ 0.82˚˚˚ 0.77˚˚˚ 0.71˚˚˚ 2.75˚˚˚ 0.60˚˚˚

(0.02) (0.03) (0.03) (0.12) (0.80) (0.03)

∆Risk1y,RBM ´0.02˚ ´0.01˚ ´0.03˚˚˚ 0.03 0.33 0.005
(0.01) (0.005) (0.01) (0.11) (0.69) (0.01)

Constant 1.11˚˚˚ 21.85˚˚˚ 24.56˚˚˚ 0.12 ´1.87 0.01˚˚˚

(0.40) (3.00) (3.01) (0.07) (7.20) (0.002)

R2 0.77 0.74 0.73 0.17 0.18 0.50

This table displays the results of the regression analysis of Equation (14) to asses the increased accuracy of risk
measures for young firms (evaluated with data from approximately one year after the initial public offering). We
use the CRSP database to obtain time series return data for these firms. The independent variables for each column
are the risk metrics calculated for the first year of a firms listing (Risk1y). The second risk measure (∆Risk1y,QBM)
is the difference between Risk1y and the risk measure extracted from the sample data augmented with the QBM
synthesized data. The dependent variable is the same metric on an extended sample of the first 5 years after a firms
listing. The second panel displays the results of a similar excercise, with the difference being that the synthesized
data comes from the RBM. For the analysis we discretize the data by creating 256 equally sized buckets between
returns between -50% and +50%. We disregard stocks with more than 10 zero return days in the first 200 days
(stale prices). We add 600 synthesized observations to the original 200 sample observations for the augmented
sample. The stars that indicate the significance level are ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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