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1 Introduction

In various research fields, e.g., biology, geography and economics, distribu-
tions exhibit heavy tails, e.g., the scaling behaviour described by the power
law of Pareto. In this literature, the tail index α is the shape parameter in
the power that determines how heavy the tail is (a higher α corresponds to a
less heavy tail). The most widely used estimator for the tail index is by Hill
(1975), which is the quasi-maximum likelihood estimator. There is an ongo-
ing debate on the number of tail observations k that are used in the estimation
of α. The choice of k involves a trade-off between the bias and variance of the
estimator. Practitioners often use “Eye-Ball” methods (Resnick and Starica,
1997) to locate an initial series of k for which the estimates are stable. This
heuristic rule is often criticized for being arbitrary. The typical approach
suggested in the statistical literature is choosing k by minimizing the em-
pirical analogue of the asymptotic mean squared error (AMSE) (Hall, 1990;
Danielsson et al., 2001; Drees and Kaufmann, 1998). While these methods
are asymptotically consistent, they often perform poorly with finite sample
sizes.

The limitations of the currently available methods motivate our new ap-
proach. Our method leverages the fact that the tails for a large subset of
heavy-tailed distributions, to a first-order expansion, correspond to the tail
of a Pareto distribution. With a suitable benchmark distribution in hand, we
minimize the distance between the scaled Pareto and empirical distribution.
We take inspiration from Clauset et al. (2009) by penalizing deviation based
on the Kolmogorov-Smirnov (KS) test statistic, but with a twist. Instead
of minimizing the maximum difference between the Pareto and empirical
probability distribution, we use the Weissman (1978) quantile estimator to
minimize the distance in the quantile dimension. The Weissman (1978) es-
timator requires an estimate of the shape parameter α, which is typically
obtained using the Hill estimator (Hill, 1975) based on the k highest order
statistics. By varying k, our method simultaneously fits the scaled pareto
to the empirical distribution and elicits k∗. We refer to this measure as the
KS-quantile metric.

The choice of using the quantile dimension is supported by the results in
De Haan and Ferreira (2007, page 138 and 154). The result shows that for
α > 1, i.e., when the first moment is bounded, the quantile estimator has a
smaller bias and variance by a factor of 1/α.1 Furthermore, small deviations in

1However, if in the case at hand even the mean is unbounded (i.e., α < 1), we recom-
mend using a probability-centric metric.
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the probability dimension lead to increasingly large distortions in the quantile
dimension. Deep into the tail, the difference in the probability dimension
is of order 1/n, but in the quantile dimension this is of order (n/k)

1/α for a
distribution which has a bounded mean. This discrepancy becomes more
pronounced as one moves further into the tail of the distribution. Therefore,
focusing our metric on the quantile domain naturally emphasizes fitting the
tail rather than central observations. Moreover, by concentrating on the
maximum, the metric further avoids being influenced by the numerous central
observations.

The arguments are supported by rigorous simulation analyses and tests.
Among other results, we use an acid test, suggested by Drees et al. (2020),
to assess the ability of the KS-quantile metric to identify a structural break
in the distribution. We simulate tail data from the heavy-tailed Pareto dis-
tribution and past a certain threshold centre observations come from the
thin-tailed exponential distribution. This acid test evaluates the metric’s
capability to distinguish between thin-tailed center observations and heavy-
tailed tail observations. Methods that use many observations from the expo-
nential distribution, outside of the domain of the Hill estimator, should be
used with caution.

In the simulations the KS-quantile metric not only picks approximately 90%
of the time a k∗ from the heavy-tailed region, but the k∗ are stacked against
the threshold. There is a visual drop in k∗ just beyond the threshold, clearly
indicating the location of the structural break in the data. As noted by Drees
et al. (2020), these properties are absent when minimizing the distance over
the probability dimension. Additionally, among the other suggested methods,
the ”automated” Eye-Ball method demonstrates similar desirable properties
to the KS-quantile metric in the acid test.

In additional results, we simulate from heavy-tailed distributions that con-
form the so-called Hall (1982) expansion. Hall and Welsh (1985) derives the
optimal k∗ for this expansion. For distributions such as the Student-t, sym-
metric stable, Fréchet, and ARCH processes, the competing methodologies
fail to reproduce the emerging patterns for k∗ as derived by Hall and Welsh
(1985), unlike the KS-quantile metric. This discrepancy results in substantial
biases in α̂ for the theory-based methods. Moreover, in terms of quantile es-
timation, the KS-quantile metric performs best beyond the 99% probability
level, the region that matters most.

Furthermore, we demonstrate that the choice of k∗ is impactful and eco-
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nomically important. For a large panel of individual firm stock returns, the
average absolute difference between estimated tail indexes (from the time se-
ries) varies between 0.19 and 6.11 depending on the methodology used. For
instance, shifting the Hill estimate from 4 to 3 by using a different method-
ology suddenly implies that the fourth moment, which captures the variance
of the volatility, does not exist. Furthermore, using the KS-quantile metric
alters the results of an existing asset pricing application (Kelly and Jiang,
2014) where a fixed threshold is applied.

The paper first introduces the Hill estimator and the KS-quantile metric.
This is followed by presenting the results from various simulations in section
3. Section 4 exhibits the estimates for the daily stock return data, followed
by concluding remarks.

2 Building the KS-quantile metric

The first part of this section reviews of the main extreme value theory (EVT)
results and the Hill estimator. These are the stepping stones for the semi-
parametric component of our metric.

2.1 Extreme value theory

Consider a series X1, X2, ..., Xn of i.i.d. random variables with cumulative
distribution function (cdf) F(x). The sorted sample, i.e., order statistics, can
be represented as

max (X1, ..., Xn) = Xn,n ≥ Xn−1,n ≥ ... ≥ X1,n = min (X1, ..., Xn) .

Suppose one is interested in the probability that the maximum is not beyond
a certain threshold x. This probability is given by

P {Xn,n ≤ x} iid
= [F (x)]n .

EVT gives conditions under which there exists sequences of norming con-
stants an and bn such that

lim
n→∞

[F (anx+ bn)]
n → G(x) ,

where G (x) is a well-defined non-degenerate cdf. There are three possible
G (x), depending on the tail shape of F (x). This paper concentrates on
distributions that have regularly varying tails,

1− F (x)

x−
1
γL (x)

= 1, as x −→ ∞, γ > 0, (1)
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where L is a slowly varying function, i.e., lim
t→∞

L(tx)/L(t) = 1. Here 1/γ = α

is the index of regular variation, or the tail index. Since α corresponds to
the number of bounded moments, results are often discussed in terms of α
rather than γ. The limit distribution for the maximum of i.i.d. heavy-tailed
observations is the Fréchet distribution (Balkema and De Haan, 1974):

Gγ>0 (x) = e−x−
1/γ

.

Note that Gγ>0 (x) satisfies (1). Hence, the tail behaves approximately as a

power function, x−
1
γ . This implies that the distribution for the maximum has

a one-to-one relationship with the shape of the tail of F (x). As a consequence,
the entire tail can be utilized for fitting instead of just using maxima; see
Mandelbrot (1963) and Balkema and De Haan (1974).

Various estimators for α are proposed in the literature (Pickands, 1975;
Hill, 1975; De Haan and Resnick, 1980; Hall, 1982; Mason, 1982; Davis and
Resnick, 1984; Csörgo et al., 1985; Hall and Welsh, 1985). Among these, the
Hill (1975) estimator is the most widely used for estimating the tail index,

γ̂ =
1

α̂
=

1

k

k−1∑
i=0

(log (Xn−i,n)− log (Xn−k,n)) , (2)

where k is the number of upper-order statistics used in the estimation of α.
Figure 1 shows the reciprocal of the Hill estimates for a sample drawn from
a Student-t(4) distribution (where α = 4), plotted against an increasing
number of order statistics k. The estimate of α varies considerably with
k, highlighting the importance of selecting an appropriate k to obtain an
accurate estimate.

The pattern observed in Figure 1 can be attributed to the bias and variance
of the Hill estimator. For small values of k, the variance of the Hill estimator
is relatively high. As k increases, the variance decreases, but the bias begins
to dominate. The bias and variance of the estimator can be derived for the
subclass of distributions in (1) that satisfy the Hall (1982) expansion2

1− F (x) = Ax−1/γ
[
1 +Bx−β + o

(
x−β
)]
. (3)

2For the Hall expansion α > 0, A > 0, β > 0 and B is a real number. Here, A and B are
the first and second-order scale parameters, while α and β are the first and second-order
shape parameters. Most known heavy-tailed parametric distributions, like the Student-t,
symmetric stable, Fréchet distribution and the distribution of the stationary solution to
the ARCH process, conform to the Hall expansion. The parameter values A, α, B, and
β for these distributions are listed in Table 6 in the Appendix, and in Appendix A.1, we
derive the parameters for the stationary distribution of the ARCH process.
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Using the Hall expansion one shows the asymptotic bias as

AE

[
1

α̂
− 1

α
| Xn−i,n > s

]
=

−βBs−β

α (α + β)
+ o

(
s−β
)
. (4)

Equation (4) describes the relationship between the threshold s and the bias
of the Hill estimator. As seen in (4), when s decreases, meaning the threshold
moves closer to the center of the distribution, the bias increases

Figure 1: Hill plot for the Student-t (4) distribution
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This graph depicts the estimate of α for various levels of k. The sample, consisting of

10,000 observations, is drawn from a Student-t(4) distribution so that α = 4. This type

of graph is commonly referred to as a Hill plot.

The asymptotic variance of the Hill estimator is3

A var

(
1

α̂

)
=

sα

nA

1

α2
+ o

(
sα

n

)
.

The variance is also a function of the threshold s. As s decreases, the variance
reduces. However, there is a trade-off between the squared bias and the
variance. For large values of s, the bias is small, and the variance dominates.

3The expressions for bias and variance are based on the second-order expansion by Hall
and Welsh (1985). For further details, see Appendix A.2.
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Existing asymptotically consistent approaches, such as those by Danielsson
et al. (2001) and Drees and Kaufmann (1998), leverage this trade-off by min-
imizing the AMSE. However, since these methods are based on asymptotic
reasoning, their finite sample properties can be quite different. Methods
based on heuristic rules often use the Hill plot to identify a stable region
with a small k, graphically balancing bias and variance. Alternatively, many
applications adopt a more straightforward approach, using a fixed percentage
of the total sample (see, e.g., Van Oordt and Zhou (2016) and Davydov et al.
(2021)). Going against this approach is the finding by Hall and Welsh (1985)
that the optimal k∗, which minimizes the AMSE, varies across different dis-
tributions and exhibits different rates of convergence. For a more detailed
exposition of existing methods, see Appendix A.3.

2.2 KS-quantile metric

In this paper we adopt a more data driven approach. We adopt the approach
of Bickel and Sakov (2008), which involves matching the tail of the empirical
cdf to a semi-parametric distribution. However, motivated by the results in
De Haan and Ferreira (2007) and to more accurately fit the most extreme
observations, where small differences in probability can lead to significant
deviations in quantiles, we measure the distance over the quantile dimension.

2.2.1 The quantile metric

The original KS test statistic is defined as the supremum of the absolute
difference between the empirical cdf, Fn (x) and a parametric cdf, F (x),

sup
x

|Fn (x)− F (x)| .

To convert this statistic to a quantile-based metric, we choose F (x) based
on the first-order term from (3):

F(x) = 1− Ax−α. (5)

This function resembles the scaled Pareto distribution when higher-order
terms are ignored in (3). In fact, many known heavy-tailed distributions
satisfy (3), making it an ideal candidate. The scaled Pareto distribution is
unique in that the first-order term holds across the entire support. To obtain
the quantile function, invert (5):

x =

(
1− F

A

)−1/α

.

7



Next substitute j/n for 1 − F(x), which is the empirical distribution. The

scale A is estimated with the Weissman (1978) estimator k
n
(Xn−k+1,n)

α̂(k),
and α with the Hill estimator.4 This results in the scaled Pareto quantile
estimate:

q (j, k) = Xn−k+1,n

(
k

j

)1/α̂k

. (6)

Here j denotes that the quantile estimate is measured at probability (n−j)/n.

Given the quantile estimator, the empirical quantile and the maximum ab-
solute deviation as the penalty function, we get:

QT = inf
k=2,...,T

[
sup

j=1,...,T
|Xn−j,n − q (j, k)|

]
, (7)

where the T th order-statistic determines the region over which the metric is
measured. Here, Xn−j,n represents the empirical quantile, and q (j, k) is the
quantile estimate from (6). The value of k that minimizes the maximum
horizontal deviation along the tail observations up to Xn−T,n is chosen as k∗

for the Hill estimator.5

Our main twist is that the distance is measured in the quantile dimension
rather than the probability dimension. There are several reasons for the
particular choice of metric. First, from a theoretical perspective, De Haan
and Ferreira (2007, pages 138 and 145) provide the following results for the
probability estimator:

√
k

αlog (k/npn)

(
p̂n
pn

− 1

)
d−→ N

(
sign(B)√

2αβ
,
1

α2

)
(8)

and similarly for the quantile estimator:

√
k

log (k/npn)

(
x̂pn
xpn

− 1

)
d−→ N

(
sign(B)√

2αβ
,
1

α2

)
. (9)

4The estimate of A is obtained by inverting P = Ax−α at threshold Xn−k+1,n.
5In Appendix A.5, we model the KS-quantile metric using a Brownian motion rep-

resentation. This approach offers two key benefits. First, the selected parameters for
a given distribution are not restricted to that distribution, allowing us to examine the
KS-quantile metric’s properties as a penalty function in a broader context. Second, since
the representation is based parameters and normally distributed random variables, it en-
ables simulation across a wide range of distributions using the same random draws. This
reduces sampling noise when comparing performance under different parameter settings.
Moreover, this representation highlights the challenge of proving asymptotic consistency
for the metric.
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Note that the probability estimate is scaled by a factor of 1/α. Consequently,
for α > 1, the bias and the variance of the probability estimator is larger
compared to the quantile estimator. Conversely, for α ≤ 1, penalty functions
based on the probability estimator may exhibit better properties.6

The second motivation is more intuitive. For tail observations, small mis-
takes in probability estimates lead to large deviations in the quantiles, the
dimension most applications are ultimately interested in. By focusing on tail
quantiles, we naturally emphasize fitting the tail of the distribution. This
approach also eliminates the need for additional penalization, such as squar-
ing the differences. To aggregate all the absolute differences along the tail
into a single metric, we use the maximum of these absolute distances. Taking
the maximum has the advantage of preventing the metric from being diluted
by numerous central observations, making the choice of a large T innocu-
ous. In contrast, averaging the differences would not have this benefit. For
a comparison of different penalty functions, see Appendix A.4 for simulation
analysis with other functions.

Providing a theoretical argument that this approach yields a consistent es-
timate for α is challenging. De Haan and Ferreira (2007) demonstrate that
while the empirical distribution and the extreme value distribution do not
converge in probability, they do converge in distribution. Therefore, it is
reasonable to expect that statistics based on the difference between the em-
pirical cdf and the tail cdf will exhibit similar behavior. To be cautious, we
also examine the higher non-central moments of the simulation estimates.

3 Simulations

To assess the finite sample properties of the KS-quantile metric, we use ex-
tensive simulation studies. We highlight two key studies below and relegate
additional results to the Appendix. The first simulation excersize evaluates
the metric’s ability to differentiate between heavy-tailed Pareto and thin-
tailed exponential distributions. The second simulation conducts a horse
race between competing methods found in the literature.

6In Appendix C figures 4 and 5, we simulate the probability and quantile criteria from
De Haan and Ferreira (2007, page 138 and 154). The simulations confirm that for α > 1,
the quantile estimator has smaller bias and variance. This flips for around α < 1 where
the quantile estimator has smaller bias and variance. This is apparent from equations (8)
and (9). Furthermore, for the Pareto distribution the bias is small and converges to zero
as more observations are used.
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3.1 Upper bound estimation

In the first simulation exercise, we draw samples from an exponential distri-
bution with a Pareto tail beyond a threshold Xn−k∗,n. A candidate method
should avoid selecting a threshold that includes many observations from the
thin-tailed exponential part of the distribution. As Drees et al. (2020) points
out, locating this smooth transition point is not an easy task. Furthermore,
while the Hill estimator is the maximum likelihood estimator for the Pareto
distribution and remains unbiased when fewer than k∗ order statistics are
used, the chosen threshold might slightly exceed k∗ as it reduces variance.

Figure 2 depicts the ratio of estimated number of order-statistics with the
KS-quantile metric, k̂, to the number of observations drawn from the Pareto
distribution, k∗. For α = 1, the ratio, k̂/k∗, is below 1 for 92.63% of the
simulations. For α equals 2, 3 and 4 the percentages decrease to 92.00%,
87.83% and 59.09%, respectively. This indicates that, in most samples, the
KS-quantile metric selects a threshold from the Pareto part of the tail. Ad-
ditionally, all four panels reveal a notable concentration of cases just below
1, demonstrating that the KS-quantile metric captures the transition from
the Pareto tail to the exponential center of the distribution. Figure 6 in the
Appendix presents a similar analysis for the KS test statistic, based on the
probability dimension, as the selection criterion. Here, almost all k∗ values
are chosen from the thin-tailed exponential part. To conclude, it appears
that the KS-quantile method passes the acid test devised by Drees et al.
(2020).7

3.2 Monte Carlo: Comparing existing methods

To compare existing methods in Monte Carlo (MC) simulations, we select
a wide range of heavy-tailed distributions and processes. The chosen cdfs
vary in their tail indices and second-order terms, leading to different rates of
convergence as n→ ∞, and distinct bias and variance trade-offs.

The Student-t, symmetric stable, Fréchet distributions and the distribution
of the stationary solution of the ARCH process all conform to the Hall expan-
sion in (3).8 Consequently, we know both α and k∗TH , where k

∗
TH minimizes

7In the Appendix (Figures 7, 8 and 9) report simulation results for various methods
discussed in the following section. The asymptotically consistent approaches tend to over-
shoot into the exponential distribution region. The double bootstrap approach, on the
other hand, tends to select smaller values for k∗ when α is one or two.

8The tail index for the Student-t distribution corresponds to the degrees of freedom,
for the symmetric stable distribution it is the characteristic exponent, and for the Fréchet
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Figure 2: Pareto tail and exponential centre (KS - quantile dimension)
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These figures present the performance of the KS-quantile metric in selecting a threshold
within the heavy-tailed region of the distribution. The samples are drawn from an
exponential distribution, p(x) = exp(−λx), for X < xc and a scaled Pareto distribution,
p(x) = Ax−α, for X ≥ xc. We set λ = 1 and A = exp(xc)x

α
c . The sample size is 10,000,

and the threshold is set at p(xc) = 0.99, so the average number of draws from the Pareto
distribution is approximately 100. We use the KS-quantile metric to estimate k∗. The
ratio k̂/k∗ is used to normalize the choice of k relative to the benchmark k∗. The figures
show results for different values of α, as indicated above the histograms. We draw 10,000
samples for each analysis.

the AMSE. Interestingly, α and k∗TH are inversely related within the Student-
t, symmetric stable distribution families, and ARCH processes. However, for
the Fréchet distribution k∗TH is independent of α. In the case of the ARCH
process, the first and second-order tail indices for the tail expansion of the
distribution of the stationary solution are known, as well as the second-order
scale parameter. The first-order scale parameter, A, is more elusive. Goldie
(1991) provides a method to obtain an explicit expression for A when α is

distribution it is the shape parameter. These distribution parameters are henceforth re-
ferred to as α. See Appendix A.2 for the derivation of the optimal theoretical asymptotic
MSE based threshold.
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an integer (see Appendix A.1 for details).

To provide perspective on the relative performance of the KS-quantile metric,
we also apply other approaches to determine k∗. We include the double boot-
strap method and the approach proposed by Drees and Kaufmann (1998),
both of which are based on asymptotic arguments.9 Furthermore, we use an
automated version of the Hill plot ’eye-balling’ method and a fixed sample
proportion as heuristic rules. These methods are discussed in Appendix A.3.
Additionally, we use the KS-probability statistic, motivated by Clauset et al.
(2009), as an empirical benchmark. Lastly, estimates of α using the AMSE-
minimizing threshold, k∗TH , primarily serve as a theoretical benchmark, since
the data-generating process (DGP) is typically unknown in practice.

Table 1 presents the first four non-central moments of the distribution of α
estimates, along with the mean of the selected k∗ for each method, using
samples drawn from the Student-t distribution family. The results in the
first set of rows reveal that most methods exhibit a downward bias, with the
exception of the double bootstrap method, which consistently shows an up-
ward bias across all degrees of freedom. This upward bias is due to instances
where the smallest possible k̂∗ is selected, leading to excessively large α̂ val-
ues. Among the methods with downward bias, this bias increases with the
degrees of freedom and is particularly pronounced in the iterative method by
Drees and Kaufmann (1998), the KS probability metric, and the fixed 5%
threshold method.

The KS-quantile metric, the theoretical AMSE based threshold, and the au-
tomated Eye-Ball method produce estimates that are closest to the true tail
index of the DGP. Based on these results for the Student-t distribution, we
conclude that the KS-quantile metric demonstrates strong bias reduction per-
formance relative to other implementable methods. However, the automated
Eye-Ball method performs only marginally worse than the KS-quantile met-
ric.

The fifth panel presents the mean choice of k∗ across the different methods.
The AMSE-minimizing k∗TH , reported in the third column, serves as a bench-
mark for the other methods. For the Student-t distribution, the KS-quantile
metric closely follows the decline in k∗TH as a function of α. However, the
average k∗KS is generally higher than k∗TH . Only the method by Drees and

9The double bootstrap method occasionally selects k = 1, leading to extremely large
outliers in the α estimates. To address this, we exclude k < 3 from its domain in the
simulations.
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Kaufmann (1998) and the double bootstrap method exhibit a similar de-
creasing pattern, though the average k∗Drees ranges from 6.7% to 10.3% of
the sample fraction. The Eye-Ball method, on the other hand, shows an
increasing pattern but selects a very low average k∗, resulting in the low bias
observed in the first panel.

The second, third, and fourth panels display the respective non-central mo-
ments of the estimates. To benchmark the evaluation of these higher mo-
ments, the results for k∗TH provide useful guidance. The KS-quantile metric
demonstrates a similar pattern to that produced by the theoretical threshold
across the second, third, and fourth moments. The KS-test statistic and the
method by Drees and Kaufmann (1998) exhibit very low variances. However,
as observed in the fifth panel, these methods tend to select high values for k∗,
indicating a preference for k∗ values that yield low variance but substantial
bias. The double bootstrap method shows excessively high values for the
higher moments. Due to its slow rate of convergence, the criterion function
of the double bootstrap is relatively flat, resulting in significant variability
in k̂∗.

The simulation results for the symmetric stable, Fréchet distributions, and
ARCH processes are presented in the Appendix. Overall, these results follow
a pattern similar to those observed for the Student-t distribution: when the
bias is relatively small, the higher moments closely align with the theoretical
threshold. However, for the ARCH processes, different methods perform
better depending on the value of α.

Quantile estimation

For many economic questions, quantile estimates are more relevant than the
precise value of the tail index. We therefore compare Pareto quantile es-
timates from different methods with the simulated order statistics. Figure
10 in the Appendix illustrates the performance of these methods in esti-
mating tail quantiles of the distribution.10 Estimating quantiles beyond the
99.5% probability is notoriously difficult, and all methods introduce signif-
icant errors in this region. However, except for the KS-quantile metric for
the Student-t(2) distribution, the KS-quantile metric, automated Eye-Ball
method, double bootstrap method, and theoretical threshold generally pro-
duce smaller errors in the extreme tail region. Conversely, the method by

10The figures present median differences due to a small number of extreme outliers
affecting tail quantiles near the center of the distribution. The qualitative results remain
consistent when using average differences.
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Table 1: Horse race Student-t distribution family
α KS qua KS prob TH 5% Eye-Ball Drees Du bo

E[α̂]

2 2.02 1.60 1.92 1.85 1.99 1.70 2.76
3 2.86 1.96 2.80 2.46 2.84 2.24 4.54
4 3.53 2.17 3.59 2.87 3.48 2.63 6.18
5 4.08 2.31 4.30 3.16 3.95 2.92 7.42
6 4.51 2.40 4.95 3.38 4.29 3.13 9.32

E[α̂2]

2 4.43 2.58 3.71 3.44 4.02 2.88 32.23
3 8.63 3.84 7.87 6.04 8.14 5.05 176.85
4 12.97 4.71 13.06 8.24 12.22 6.97 239.24
5 17.13 5.33 18.86 10.01 15.72 8.55 233.73
6 20.85 5.78 25.13 11.42 18.55 9.84 2909.77

E[α̂3]

2 10.64 4.14 7.18 6.39 8.24 4.91 2760.66
3 27.51 7.53 22.32 14.89 23.56 11.40 8 ∗ 104
4 49.48 10.23 48.05 23.72 43.18 18.49 1 ∗ 105
5 74.04 12.31 84.14 31.74 62.87 25.17 4 ∗ 104
6 98.48 13.92 130.58 38.67 80.60 31.09 1.1 ∗ 107

E[α̂4]

2 28.01 6.65 13.94 11.90 17.14 8.38 4.6 ∗ 105
3 92.62 14.77 63.76 36.77 68.87 25.85 5.9 ∗ 107
4 196.00 22.24 179.05 68.40 153.70 49.31 8.7 ∗ 107
5 328.84 28.46 382.47 100.81 253.05 74.45 1.3 ∗ 107
6 475.28 33.53 695.21 131.17 352.29 98.73 5.1 ∗ 1010

E[k̂∗]

2 500.11 1300.63 281.00 500.00 19.37 1039.09 191.73
3 339.27 1310.03 132.00 500.00 35.13 841.56 89.65
4 237.13 1313.79 78.00 500.00 51.85 755.24 53.95
5 169.82 1316.07 53.00 500.00 68.80 708.72 36.59
6 133.37 1317.20 40.00 500.00 84.19 680.43 27.43

This table presents the first four non central moments of the distribution of estimated α
values and the average k∗ selected in the simulations across different methods. The samples
are drawn from the Student-t distribution family, with the column labeled α indicating
the degrees of freedom for each particular Student-t distribution. The various methods are
listed in the first row. ’KS qua’ refers to the Kolmogorov-Smirnov metric measured over
the quantile dimension, as described in (7). ’KS prob’ represents the Kolmogorov-Smirnov
metric measured over the probability dimension. ’TH’ denotes the theoretically derived
optimal k from minimizing the AMSE for specific parametric distributions, as presented in
Equation (17) in the Appendix. The ’Automated Eye-Ball’ method refers to the heuristic
approach aimed at identifying the first stable region in the Hill plot, as outlined in (18).
For the column labeled ’Drees,’ k∗ is determined by the methodology described by Drees
and Kaufmann (1998). ’Du bo’ refers to the double bootstrap procedure by Danielsson
et al. (2001). The sample size is n = 10, 000, with 10,000 repetitions conducted for each
method.

Drees and Kaufmann (1998), the 5% fixed sample fraction, and the KS-test
statistic tend to make larger errors in the extreme tail beyond the 99% quan-
tile but perform better for quantiles closer to the distribution center. Similar
patterns are observed for the symmetric stable and Fréchet distributions (see
Figures 11 and 12 in the Appendix).

14



Based on the MC simulation analysis, we conclude that both the KS-quantile
metric and the automated Eye-Ball method exhibit superior performance
compared to other implementable methods. These two methods perform
well according to the first four moments of the estimated α. Notably, the
KS-quantile metric aligns more closely with the theoretical optimal threshold
in terms of k∗. However, the results for quantile estimation are more nuanced.
While the KS-quantile metric and the automated Eye-Ball method excel in
estimating quantiles deep in the tail of the distribution, they exhibit relatively
larger bias closer to the central regions of the distribution.

4 Application: Financial return series

The estimation of tail indexes is important in many fields. Most applications
use a single cross-section or time-series in their application. It is hard to
tie conclusions to very few estimates. Financial market data are particularly
advantageous for evaluating the impact of threshold selection on real-world
applications. With their long time series and rich cross section, stock returns
provide an excellent opportunity to empirically assess the effects of different
threshold choices.

In this context, we apply the methods from the MC horse race to estimate
tail indexes for the return distributions of individual U.S. stocks. Addition-
ally, we replicate the tail risk factor analysis conducted by Kelly and Jiang
(2014), who employed a 5% threshold level in their asset pricing study. By
progressively lowering the threshold and ultimately applying the KS-quantile
metric, we examine how these adjustments affect the economic implications
of their constructed risk factor.

4.1 Data

The stock market data utilized in this study is sourced from the Centre for
Research in Security Prices (CRSP). The CRSP database provides individual
stock data from December 31, 1925, to December 31, 2015, covering NYSE,
AMEX, NASDAQ, and NYSE Arca exchanges. We analyze data from a
total of 17,918 stocks. To ensure data quality and the accuracy of the Hill
estimator, we exclude stocks with fewer than 48 months of data and those
with an average price below 5 dollars. For the accuracy of Hill estimator
typically a large total sample size is required because only a small sample
fraction is informative regarding the tail shape properties.
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4.2 Empirical impact

To illustrate the impact of different threshold selection methods, we estimate
the threshold for each stock using its time-series returns. Table 2 presents
the average absolute differences in α estimates between various methods.
The observed differences are substantial for both the left and right tails.11

The KS-quantile metric and the automated Eye-Ball method show notable
deviations compared to the method by Drees and Kaufmann (1998) and the
KS-test statistic. The 5% fixed threshold method is closest to both. The
double bootstrap method exhibits many large outliers, leading to a large
average deviation relative to other methods.

Comparing the results from the MC horse race in Table 1 with this financial
application reveals noticeable parallels. In both cases, the tail index estimates
obtained using the KS-quantile metric and the Eye-Ball method are closely
aligned, while both deviate from the iterative method. The double bootstrap
method, consistent with the simulation results, is primarily characterized
by large outliers. These similarities raise concerns about the applicability
of fixed threshold and AMSE inspired approaches for real-world empirical
estimation.

4.3 Cross-sectional Hill estimator

Most financial applications estimate the tail index α using time-series data
on stock prices, see e.g., Jansen and De Vries (1991). Other applications use
a single cross-section to analyze power law behavior in areas such as city size
or income distribution, as seen in Gabaix (1999) and Reed (2003). Recent
work by Kelly and Jiang (2014) examines the cross-section of individual U.S.
stock returns to estimate a tail index conditional on time t. Their findings
indicate that stocks more exposed to variations in the tail index demand a
risk premium, while those with lower or negative covariance with the tail
index offer a hedging opportunity and thus trade at a discount compared to
stocks with high exposure. Furthermore, they observe persistence in the time-
varying tail index estimates. If investors are averse to increasing tail risk, a
positive shock to tail risk serves as a signal of future risk levels, leading to
higher demanded compensation (i.e., risk premium). This persistence in tail
risk introduces predictability in risk premia based on changes in conditional
tail risk.

11For descriptive statistics on tail index estimates and thresholds for both tails, refer
to Table 10 in the Appendix. Table 11 provides results for median absolute differences,
which are similar to the mean results but smaller in magnitude.
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Table 2: Mean absolute differences between different methods
Left Tail Right Tail

KS qua KS pr 5% Eye-Ball Drees Du bo KS qua KS pr 5% Eye-Ball Drees Du bo
KS qua 0 0.98 0.76 0.57 0.96 5.35 0 1.09 0.82 0.58 1.05 3.68
KS pr 0.98 0 0.36 0.88 0.22 6.11 1.09 0 0.39 0.92 0.19 4.56
5% 0.76 0.36 0 0.56 0.37 5.79 0.82 0.39 0 0.57 0.38 4.21

Eye-Ball 0.57 0.88 0.56 0 0.85 5.42 0.58 0.92 0.57 0 0.87 3.83
Drees 0.96 0.22 0.37 0.85 0 6.07 1.05 0.19 0.38 0.87 0 4.51
Du bo 5.35 6.11 5.79 5.42 6.07 0 3.68 4.56 4.21 3.83 4.51 0

(a) Estimates α (k∗i )

Left Tail Right Tail
KS qua KS pr 5% Eye-Ball Drees Du bo KS qua KS pr 5% Eye-Ball Drees Du bo

KS qua 0 238 136 89 216 92 0 243 134 83 227 88
KS pr 238 0 136 301 90 305 243 0 137 303 80 310
5% 136 136 0 167 123 173 134 137 0 167 126 176

Eye-Ball 89 301 167 0 277 45 83 303 167 0 285 47
Drees 216 90 123 277 0 280 227 80 126 285 0 288
Du bo 92 305 173 45 280 0 88 310 176 47 288 0

(b) Estimates k∗i
This table presents mean absolute differences between α̂ (k∗i ) and k∗i by applying the six
different methods to choose k∗i for the left and right tail of stock returns. The analysis uses
data from the CRSP database, covering individual stock data from December 31, 1925,
to December 31, 2015, across the NYSE, AMEX, NASDAQ, and NYSE Arca. The six
different methods are the KS-quantile metric, KS test statistic, 5% threshold, automated
Eye-Ball method, the iterative method by Drees and Kaufmann (1998) and the double
bootstrap by Danielsson et al. (2001). Stocks with α̂ > 1, 000 sing any of the methods are
excluded from the analysis. The maximum k∗ is cut off at 15% of the total sample size.
There are 17,918 stocks included in the analysis.

In this section, we reproduce the original results and explore the impact
of selecting an appropriate threshold. The original study collected daily
returns for all stocks within a month to estimate the tail index for month
t. In Kelly and Jiang (2014), the threshold was set at 5% of the sample.12

This approach generates a monthly series of γt estimates.13 The covariation
of each stock with γ̂t is then measured, and stocks are ranked according to
their co-movements. If γt is a priced risk factor, then the risk premium on
different stocks and the exposure should be positively correlated.

We replicate the cross-sectional analysis and the predictability regressions.
Table 3 presents the results for the cross-sectional pricing of tail risk using
different thresholds for the γt estimates. The first row reproduces the approx-
imately 4% risk premium that Kelly and Jiang (2014) originally identified
for stocks with high covariance relative to those with low covariance. In

12On average, there are approximately 80,000 daily observations in a month (about 3,800
stocks over 21 trading days). The smallest cross-sectional sample size is around 35,000
at the start of the sample period, while the largest, around the year 2000, reaches about
130,000.

13In this part of the analysis, γ is used because an increase in indicates a heavier tail,
which corresponds to higher risk.
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Table 3: Cross-sectional pricing of tail risk
Low 2 3 4 High High-low t-stat

γ̂5% 7.02 8.29 9.33 10.12 11.81 4.78 2.07
γ̂2.5% 7.17 8.34 9.15 10.25 11.67 4.50 2.12
γ̂1% 8.18 8.33 8.67 10.13 11.26 3.09 1.40
γ̂0.5% 8.16 8.58 8.84 9.89 11.11 2.95 1.49
γ̂KS 8.40 8.67 8.65 9.76 11.11 2.71 1.81

(a) Portfolio returns based on αt from single-factor model

Low 2 3 4 High High-low t-stat
γ̂5% 8.72 8.60 8.71 9.12 11.42 2.70 1.79
γ̂2.5% 8.62 8.55 8.48 9.50 11.43 2.81 1.94
γ̂1% 9.27 7.90 8.57 9.26 11.58 2.30 1.75
γ̂0.5% 9.60 8.28 8.45 9.18 11.06 1.46 1.04
γ̂KS 9.15 9.03 8.55 9.20 10.64 1.49 1.91

(b) Portfolio returns based on αt from joint estimation with Fama-French factors

This table presents return statistics for portfolios formed based on their co-movement
with cross-sectionally estimated tail indexes, using different thresholds. Each month,
stocks are sorted into quintile portfolios according to tail betas, which are estimated from
monthly data over the previous ten years. These equally weighted portfolios consist of
NYSE/AMEX/NASDAQ common stocks with prices above 5 dollars at the time of port-
folio formation. In the first four rows of each panel, the subscripts on γ indicate the sample
fraction used to estimate γt. The last row uses the KS-quantile metric. Panels (a) and
(b) report results where the tail risk beta is estimated using a single-factor model and the
Fama-French three-factor model, respectively. The rightmost columns display the results
for a high-minus-low zero net investment portfolio, which is long on quintile portfolio five
and short on quintile portfolio one, along with the associated t-statistics. The t-statistics
are calculated using Newey and West (1987) standard errors with 12 lags.

the second to fourth rows, the threshold is adjusted closer to the tail of the
distribution for estimating γt. At these lower thresholds, the risk premium
decreases by half and becomes insignificant at the 10% confidence level. The
risk premium based on α̂KS also decreases by half relative to the estimates
using the 5% threshold, but it remains statistically significant.14

Table 4 presents the results of predicting the risk premium across different
horizons using γ̂t. The first row shows the results following the methodology
in Kelly and Jiang (2014), while the subsequent rows progressively lower the
threshold. As the threshold moves deeper into the tail of the distribution,
the predictive power of γ̂t diminishes across the various horizons. Both the
R2 and the t-statistic on the coefficient decrease as the threshold level low-

14The results are quantitatively similar when the exposures are jointly estimated with
other known risk factors.
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Table 4: Predictive regression U.S. stock index different horizons

1 month 1 year 3 year
Coeff t-stat. R2 Coeff t-stat. R2 Coeff t-stat. R2

γ̂5% 0.10 2.60 1.02 1.01 2.35 7.17 3.02 2.36 19.90
γ̂2.5% 0.10 2.44 0.90 0.98 2.11 5.84 3.07 2.23 17.60
γ̂1% 0.08 1.98 0.60 0.78 1.71 3.63 2.62 1.92 12.21
γ̂0.5% 0.08 1.93 0.57 0.57 1.39 2.14 1.97 1.61 7.53
γ̂KS 0.02 0.56 0.05 0.02 0.10 0.01 -0.09 -0.14 0.02

This table reports results from monthly predictive regressions. We use the cross-sectional
tail index estimates to predict the CRSP value-weighted market index returns over
one-month, one-year, and three-year horizons. The different rows report forecasting
results based on cross-sectional tail index time series with different thresholds. The test
statistics are calculated using Hodrick (1992) standard errors for overlapping data with
lag length equal to the number of months in each horizon.

ers. Notably, when the KS-quantile metric is applied, the predictive power
becomes insignificant.

This finding suggests that the predictability results are sensitive to the thresh-
old choice. Given that the average cross-sectional sample size ranges between
35,000 and 120,000, the 5% threshold is significantly distant from the tail of
the distribution.15 Consequently, selecting an appropriate threshold becomes
crucial in economic applications, particularly in distinguishing between rare,
extreme events and more common occurrences.

5 Conclusion

In this paper, we propose a new data-driven approach for selecting the opti-
mal number of order statistics for the Hill estimator. Our method uses the
maximum absolute deviation over the quantile dimension to fit the tail with
a scaled Pareto distribution. Rigorous simulation studies demonstrate that
our metric outperforms existing asymptotically consistent methods, where
the first moment is bounded.

We demonstrate the economic significance of choosing an appropriate thresh-
old by contrasting the performance of various methods using individual fi-
nancial stock return data. The variation between methods is substantial and

15Considering the use of a large sample fraction, one might question whether the ob-
served predictability stems from moments of the data that depend on central observations.
Additional regression results indicate that the predictive power of α5% is not explained by
the variance, skewness, or kurtosis of the cross-sectional distribution.
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alters the results in existing papers in an economically meaningful way. Al-
though the choice of threshold might seem innocuous, it impacts the results,
underscoring the importance of carefully selecting the threshold in empirical
analysis.
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Dietrich, D., De Haan, L., Hüsler, J., 2002. Testing extreme value conditions.
Extremes 5, 71–85.

Drees, H., Janßen, A., Resnick, S. I., Wang, T., 2020. On a minimum dis-
tance procedure for threshold selection in tail analysis. SIAM Journal on
Mathematics of Data Science 2, 75–102.

Drees, H., Kaufmann, E., 1998. Selecting the optimal sample fraction in
univariate extreme value estimation. Stochastic Processes and their Appli-
cations 75, 149–172.

21



Gabaix, X., 1999. Zipf’s law for cities: an explanation. The Quarterly Journal
of Economics 114, 739–767.

Goldie, C. M., 1991. Implicit renewal theory and tails of solutions of random
equations. The Annals of Applied Probability pp. 126–166.

Hall, P., 1982. On some simple estimates of an exponent of regular variation.
Journal of the Royal Statistical Society. Series B (Methodological) 44, 37–
42.

Hall, P., 1990. Using the bootstrap to estimate mean squared error and select
smoothing parameter in nonparametric problems. Journal of Multivariate
Analysis 32, 177–203.

Hall, P., Welsh, A., 1985. Adaptive estimates of parameters of regular vari-
ation. The Annals of Statistics 13, 331–341.

Hill, B. M., 1975. A simple general approach to inference about the tail of a
distribution. The Annals of Statistics 3, 1163–1174.

Hodrick, R. J., 1992. Dividend yields and expected stock returns: Alterna-
tive procedures for inference and measurement. The Review of Financial
Studies 5, 357–386.

Jansen, D. W., De Vries, C. G., 1991. On the frequency of large stock returns:
Putting booms and busts into perspective. The Review of Economics and
Statistics 73, 18–24.

Kelly, B., Jiang, H., 2014. Tail risk and asset prices. Review of Financial
Studies 27, 2841–2871.

Mandelbrot, B. B., 1963. New methods in statistical economics. Journal of
Political Economy 71, 421–440.

Mason, D. M., 1982. Laws of large numbers for sums of extreme values. The
Annals of Probability 10, 754–764.

Newey, W., West, K., 1987. A simple, positive semi-definite, heteroskedas-
ticity and autocorrelation consistent covariance matrix. Econometrica 55,
703–708.

Pickands, J., 1975. Statistical inference using extreme order statistics. The
Annals of Statistics 3, 119–131.

Reed, W. J., 2003. The pareto law of incomes—an explanation and an exten-
sion. Physica A: Statistical Mechanics and its Applications 319, 469–486.

22



Resnick, S., Starica, C., 1997. Smoothing the Hill estimator. Advances in
Applied Probability 29, 271–293.

Sun, P., De Vries, C. G., 2018. Exploiting tail shape biases to discriminate be-
tween stable and Student-t alternatives. Journal of Applied Econometrics
33, 708–726.

Van Oordt, M. R., Zhou, C., 2016. Systematic tail risk. Journal of Financial
and Quantitative Analysis 51, 685–705.

Weissman, I., 1978. Estimation of parameters and large quantiles based on
the k largest observations. Journal of the American Statistical Association
73, 812–815.

23



A Appendix

A.1 The scale of the ARCH(1) process

For the ARCH(1) stochastic process, the first and second-order tail indices
of the distribution’s stationary solution are known, as well as the second-
order scale parameter. However, the first-order scale parameter remains more
elusive. Generally, only implicit expressions are available, as discussed in
Goldie (1991). In cases where the implied first-order tail index is an integer,
Goldie provides a method to obtain explicit expressions for the first-order
scale parameter. This note implements Goldie’s approach, which is valuable
as it offers a benchmark for simulations in the tail area.

Construction of the first-order scale

Consider the ARCH(1) process:

Yt = XtHt

and
H2

t = a+ bY 2
t−1

and where X is a standard normal random variable. Combining the two
equations after squaring the first yields the random difference equation

Y 2
t = aX2

t +
(
bX2

t

)
Y 2
t−1.

By the method outlined in Sun and De Vries (2018), it follows that the
stationary solution to this process has a tail expansion

Pr
{
Y 2 > t

}
∼ At−α

[
1 +Bt−β

]
for t → ∞. The first-order tail index α follows from solving the Kesten
equation

Γ

(
α +

1

2

)
=

√
π/ (2b)α .

Note that Γ
(
α + 1

2

)
= (2α)!

4αα!

√
π for α integer valued. In the following we state

the parameter values for A, B and β when α is an integer. Giving,

b(α) =

[
2α!

(2α)!

]1/α
.
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Furthermore, necessarily β = 1 and B follows from

B = aαb(α)α
E
[
(X2)

α+1
]

1− (b(α)α+1)E
[
(X2)α+1]

= aαb(α)α
(2α + 1)!!

1− (b(α)α+1) (2α + 1)!!,

(10)

where X is a standard normal random variable. Note that E [Xp] = (p− 1)!!
for the even moments. Here x!! is the double factorial.

We now turn to A. Goldie (1991) shows it requires several iterative steps to
find

A =
1

αm
E
[(
a+ b(α)Y 2

)α −
(
b(α)Y 2

)α]
E
[
|X|2α

]
, (11)

where

E
[
|X|2α

]
= 2α

1√
π
Γ

(
α +

1

2

)
and

m = b(α)α ln (b(α)) + b(α)α2α
1√
π
Γ

(
α +

1

2

)(
ln 2 + ψ

(
α +

1

2

))
and where ψ (.) = Γ′ (.) /Γ (.) is the digamma function. For integers α ≥ 1

ψ

(
α +

1

2

)
= −γ − 2 ln 2 + 2

(
1 +

1

3
+ ...+

1

2α− 1

)
and where γ is Euler’s constant.

The expression for A contains a binomial expansion with α as the exponent
and can therefore be written as

A =
1

αm
E
[(
a+ b(α)Y 2

)α −
(
b(α)Y 2

)α]
E
[
|X|2α

]
=

1

αm
E

[
α−1∑
i=0

(
α

i

)
aα−i

(
b(α)Y 2

)i]
E
[
|X|2α

] (12)

For α = 1 the expression for A boils down to a/m. Note that E
[
|X|2

]
= 1.

For α > 1 the binomial expansion shows that we need the unconditional
2(α− 1)th moment of Yt which depends on the unconditional even moments
of Yt smaller than 2(α − 1). Therefore, we follow an iterative procedure to
calculate A. Take for instance the expression of A for α = 3

A =
1

3m
E
[
a3 + 3a2b(α)Y 2 + 3ab(α)2Y 4

]
E
[
|X|6

]
. (13)
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For the stationary distribution of Y , it has to hold that

E
[
Y 4
]
= a2E

[
X4
]
+ 2ab(α)E

[
Y 2
]
E
[
X4
]
+ b(α)2E

[
Y 4
]
E
[
X4
]

E
[
Y 4
]
=
a2E [X4] + 2ab(α)E [Y 2]E [X4]

1− b(α)2E [X4]

(14)

Also note that

E
[
Y 2
]
= aE

[
X2
]
+ b(α)E

[
Y 2
]
E
[
X2
]

E
[
Y 2
]
=

aE [X2]

1− b(α)E [X2]
.

(15)

By substituting the expression for E [Y 2] into the expression for E [Y 4] we
have an explicit expression for A in case of α = 3. For larger values of α
more iterative steps, by the same logic, have to be taken to get an explicit
expression for A. With the explicit expression for A, Table 5 provides all the
parameters of the Hall expansion for the stationary solution of the ARCH(1)
process up to α = 6. For presentational purposes we choose a = 1.

Table 5: Parameters Hall expansion for ARCH(1)
α 1 2 3 4 5 6
b 1 0.58 0.41 0.31 0.25 0.21
β 1 1 1 1 1 1
B -1.5 -5.3 -11.42 -19.87 -30.65 -43.75
A 1.37 4.61 28.65 298.02 4290.03 78071.7

We use these parameters to determine the optimal theoretical AMSE thresh-
old in simulations with the ARCH process. Table 9 in the Appendix demon-
strates that the performance of the various methods differs across the dif-
ferent ARCH processes. All methods have a region over α for which they
perform well. The KS-quantile metric is particularly apt for larger values
of α. For the more heavy-tailed processes the KS-probability statistic and
the method by Drees and Kaufmann (1998) have the smallest bias. Con-
sequently, as α increases, their estimates adjust marginally, especially the
KS-test statistic estimates. Therefore, as α increases their bias increases and
the KS-quantile and Eye-Ball method produce a smaller bias. This pattern is
also mimicked in the higher moments of the α̂’s. The level of k∗ for the KS-
quantile and the Eye-Ball method are more in line with the AMSE optimal
threshold. Furthermore, the KS-quantile metric also shows the decreasing
pattern present in k∗TH .
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A.2 Optimal theoretical threshold

From the variance and the bias, the MSE = var+ (bias)2 is

MSE =
sα

nA

1

α2
+

(
βBs−β

α (α + β)

)2

+ o

(
sα

n

)
+ o

(
s−2β

)
.

For the AMSE the small terms go to 0,

AMSE =
sα

nA

1

α2
+

(
βBs−β

α (α + β)

)2

.

Taking the derivative w.r.t. s and setting it to zero gives optimal threshold

s∗ =

[
2AB2β3α−1

(α + β)2

] 1
α+2β

n
1

α+2β .

Substituting s∗ back into the MSE gives

MSE∗ =
1

Aα

[
1

α
+

1

2β

] [
2AB2β3α−1

(α + β)2

] α
α+2β

n− 2β
α+2β + o

(
n− 2β

α+2β

)
. (16)

Hall and Welsh (1985) show that there does not exist an estimator that can
improve on the rate by which the AMSE of the Hill estimator disappears as
n increases. Given s∗ and noticing that 1− F (s) = As−α

[
1 + s−β

]
gives the

following result for the number of upper-order statistics:

n
−2β
α+2βM (s∗) →

n→∞
A

[
2AB2β3α−1

(α + β)2

]− α
α+2β

. (17)

Through the Hall expansion we have the functional forms for α, β, A and B
for the Student-t, symmetric stable, Fréchet distribution and the distribution
of the stationary solution to the ARCH process. See tables 5 and 6 for the
parameter values for the specific distributions.

Table 6: Hall expansion parameters values
Stable Student-t Fréchet

α (1, 2) (2,∞) (2,∞)
β α 2 α

A 1
π
Γ (α) sin

(
απ
2

)
1√
απ

Γ(α+1
2 )

Γ(α
2 )

α(α−1)/2 1

B −1
2
Γ(2α) sin(απ)

Γ(α) sin(απ
2 )

−α2

2
α+1
α+2

1
2
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A.3 Other methods

Danielsson et al.’s double bootstrap

The double bootstrap by Danielsson et al. (2001) minimizes the following
criterium,

Q (n1, k1) := E

([
M∗

n1
(k1)− 2

(
γ∗n1

(k1)
)2]2)

,

where

M∗
n1
(k1) =

1

k1

k1∑
i=0

(
log

(
Xn1−i,n1

Xn1−k1,n1

)2
)
.

Here n1 = n1−ϵ is the smaller sub-sample for the bootstrap. The γ∗n1
is the

Hill estimator for the bootstrapped sample. The Q function is minimized
over two dimensions, namely: n1 and k1. Given the optimal n∗

1 and k∗1, a
second bootstrap with a smaller sample size n2 is executed to determine k∗2.
Here n2 is typically chosen to be n2 = n2

1/n. The optimal number of order
statistics is given by,

k̂∗db =
(k2)

2

k1

[
log (k1)

2

(2 log (n1)− log (k1))
2

] log(n1)−log(k1)
log(n1)

.

Drees and Kaufmann (1998)’s sequential estimator

Drees and Kaufmann (1998) introduce a sequential procedure that yields
stopping time,

kn (rn) = min

{
k ∈ {2, .., n} | max

2≤i≤kn
i1/2 |γ̂n,i − γ̂n,k| > rn

}
,

where the threshold rn = 2.5γ̃nn
1/4. Here γ̃n is the initial estimator for γ with

k = 2
√
n+, where n+ is the number of positive observations in the sample.

This leads to the adaptive estimator

k∗DK :=

[
(2ρ̂n + 1)−1/ρ̂n

(
2γ̃2nρ̂n

)1/(2ρ̂n+1)
(
kn
(
rξn
)
/kn (rn)

ξ
)1/(1−ξ)

]
with

ρ̂n,λ (rn) := log

max
2≤i≤[λkn(rn)]

i1/2
∣∣∣γ̂n,i − γ̂n,[λkn(rn)]

∣∣∣
max

2≤i≤kn(rn)
i1/2

∣∣∣γ̂n,i − γ̂n,kn(rn)

∣∣∣ / log (λ)− 1

2
,

where λ ∈ (0, 1).
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Automated Eye-Ball method

The algorithms based on “Eye-Balling” the Hill plot aim to identify a signif-
icant drop in variance as k increases. To be able to use multiple simulations,
we formalize an automated Eye-Ball method. To this end we employ a se-
quential procedure, as follows:

k∗eye = min
{
k ∈ 2, ..., n+ − w|h < 1

w

∑w

i=1
I {α̂ (k + i) < α̂ (k)± ε}

}
. (18)

Here I{·} is the indicator function and w is the size of the moving window,
which is typically 1% of the full sample. This window is used to evaluate
the volatility of the Hill estimate. The ε gives the range between which
[α̂ (k + 1) , ..., α̂ (k + w)] are within the permitted bound around α̂ (k). No
less than h% of the estimates should be within the bound of α̂ (k) for k to
be considered as a possible candidate. Here h is typically around 90%, and
ε is chosen to be 0.3. The n+ is the number of positive observations in the
data.

A.4 Alternative penalty functions

We compare the performance of our metric to three other metrics: the mean
squared deviations, the mean absolute deviations, and a discretized version
of the metric used by Dietrich et al. (2002). The mean squared deviations
metric is

Q2,n =
1

T

T∑
j=1

(xn−j,n − q (j, k))2

and the mean absolute deviations

Q3,n =
1

T

T∑
j=1

|xn−j,n − q (j, k)|

where T is the region over which the metric is measured. These types of
penalty functions are often used in the econometric literature, but averaging
tends to emphasize the numerous centre observations

The third metric we consider is inspired by the theoretical test statistic de-
veloped by Dietrich et al. (2002). They devised a statistic to test whether
the extreme value conditions apply. Discretizing their statistic results in.

Q4,n =
T∑

j=1

(xn−j,n − q (j, k))2

[q′ (j, k)]2
=

1

T

T∑
j=1

(
xn−j,n −

(
k
j

) 1
α̂k xn−k+1,n

)2

[
− 1

α̂k

(
j
k

)−(
1+ 1

α̂k

)
(xn−k+1,n)

n
k

]2 .
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We draw samples from the Student-t distribution family to demonstrate the
properties of the different metrics. To conserve space, the analysis of the
symmetric stable and Fréchet distribution families is available upon request.

In Figure 13, the level of α(k∗) is displayed against the threshold T over
which the specified metric is optimized. These plots provide an indication of
whether α(k∗) is at the correct level and remains insensitive to the nuisance
parameter T . The upper left panel shows that the curves for the KS-quantile
metric are relatively flat and close to the theoretical level of α. In contrast,
based on the mean square distance, mean absolute distance, and the metric
by Dietrich et al. (2002), the estimates of α(k∗) do not stabilize, except for
the Student-t (2) distribution. The monotonic decline in the three graphs
suggests that the level of k∗ is dependent on the region over which the opti-
mization occurs.

The lower four panels in Figure 13 depict the average k∗ for the Student-t
distribution family. These figures illustrate the properties of k∗ as the interval
[Xn,n, Xn−T,n] is extended. For the KS-quantile metric, the average k∗ as a
function of T stabilizes once T is sufficiently large. However, for the Student-
t(2) distribution, this stabilization occurs very slowly. The average mean
squared distance displays roughly the same properties as the KS-quantile
metric. Although the choice of k∗ seems to stabilize, it does not necessarily
lead to a stable and optimal estimation of α (k∗). This stabilization is not
observed for the mean absolute difference or the metric by Dietrich et al.
(2002). Additionally, we observe that for the KS-quantile metric, k∗ is an
increasing function of the degrees of freedom, which aligns with the pattern
expected based on k∗TH derived by minimizing the AMSE for the Student-t
distribution family—a pattern not observed for the other criteria.

A.5 Brownian motion representation

There are various ways to study the behavior of the KS-quantile metric.
In this context, we examine its properties by modeling the quantile process
using a Brownian motion representation. This approach allows us to simu-
late under more general conditions than those provided by fully parametric
distributions.

By Theorem 2.4.8 from De Haan and Ferreira (2007, 52) the KS-quantile
metric in (7) can be written as

argmin
0<k<T

sup
0<l<T

k

∣∣∣xn−lk,n − (l)−γ̂ xn−k,n

∣∣∣
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when xn−lk,n are the logarithm of the order statistics. This is equal to

argmin
0<k<T

sup
0<l<T

k

∣∣∣ γ√
k
U
(
n
k

)
l−γ̂
[
l−1w (l)− w (1) + A0

(
n
k

) √
k
γ

l−ρ−1
ρ

]∣∣∣, (19)

where l = i/k, ρ ≤ 0, U (n/k) =
(

1
1−F

)←
, w (l) is a Brownian motion and

A0 (n/k) is a suitable normalizing function. We use the expectation of γ

γ̂ = γ +
γ√
k

∫ 1

0

(
l−1w (l)− w (1)

)
dl +

A0 (n/k)

1− ρ
,

see De Haan and Ferreira (2007, 76). For the case that the cdf satisfies the
Hall expansion in (3), U

(
n
k

)
and A0

(
n
k

)
can be given further content. This

is also needed for the simulations that are performed below. Suppose the cdf
satisfies the Hall expansion (3). Then applying the De Bruijn inversion16 we
arrive at,

U
(n
k

)
= Aγ(n/k)γ

[
1 +

B

α
A−βγ (n/k)−βγ

]
and

A0 (n/k) = − β/α

αB−1Aβ/α n
k
β/α

.

Simulating from (19) necessitates a choice of values for parameters α, β, A
and B. For the robustness of the Monte Carlo simulations, we use distribu-
tions and processes that differ along the dimension of these parameters. The
Student-t, symmetric stable and Fréchet distribution all satisfy the power
expansion in (3).

The left plots in Figure 3 in Appendix C show, for a given k, at which
order statistic the maximum quantile distance is observed for the Student-
t, symmetric stable and Fréchet distributions for a given range of α family
parameters. The right plot displays the value of this maximum distance for
the given k. These two plots offer insight into how the KS-quantile metric
selects k∗ under relatively general conditions. It is evident that for large k, the
largest deviations are almost always found at the most extreme observations.
By choosing a large k, the Pareto distribution fits better as the Hill estimator
in this case is unbiased, resulting in the largest deviation being observed at
more extreme observations. Conversely, for smaller k, the largest deviations
are more frequently found at less extreme observations.

The right panel shows that for the largest deviations given k, the smallest
of these largest deviations are observed at k = 2. A small value of k = 2 is

16See Bingham et al. (1989, page 29).
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desirable as it minimizes the bias of the Hill estimator. Since the modeled
γ̂ is based on the expectation of the Hill estimator, it is not surprising that
the limit in (19) identifies k = 2 as the optimal threshold. This threshold
minimizes the bias in the Hill estimator. This also holds for the parameters
retrieved from the symmetric stable and Fréchet distribution in panels (b)
and (c).
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B Tables
Table 7: Horse Race symmetric stable distribution family
α KS qua KS prob TH 5% Eye-Ball Drees Du bo

E[α̂]

1.1 1.21 1.08 1.10 1.11 1.11 1.07 1.34
1.3 1.39 1.35 1.35 1.37 1.32 1.33 1.51
1.5 1.57 1.68 1.60 1.72 1.54 1.67 1.82
1.7 1.77 2.10 1.88 2.32 1.84 2.18 2.37
1.9 2.30 2.62 2.36 3.55 3.35 3.13 3.66

E[α̂2]

1.1 2.01 1.17 1.22 1.23 1.27 1.14 6.12
1.3 2.32 1.82 1.83 1.87 1.78 1.78 5.64
1.5 2.91 2.83 2.57 2.97 2.44 2.81 5.35
1.7 3.58 4.40 3.58 5.41 3.47 4.75 9.32
1.9 5.92 6.88 5.85 12.63 11.37 9.85 20.85

E[α̂3]

1.1 9.77 1.26 1.35 1.37 1.49 1.22 355.53
1.3 4.84 2.46 2.49 2.57 2.47 2.37 225.38
1.5 6.43 4.76 4.17 5.13 3.94 4.72 86.07
1.7 8.24 9.23 6.93 12.62 6.64 10.40 340.43
1.9 16.54 18.06 15.23 45.04 38.98 31.16 1286.54

E[α̂4]

1.1 239.68 1.37 1.49 1.54 1.80 1.30 4.4 ∗ 104
1.3 13.10 3.32 3.39 3.54 3.50 3.17 1.9 ∗ 104
1.5 17.40 8.01 6.81 8.89 6.48 7.93 3370.33
1.7 21.54 19.39 13.64 29.54 12.94 22.79 3.7 ∗ 104
1.9 49.41 47.43 41.79 161.02 135.17 98.97 2.4 ∗ 105

E[k̂∗]

1.1 237.69 1116.87 817.00 500.00 7.86 1482.65 696.73
1.3 181.82 1091.10 292.00 500.00 10.03 1467.80 904.31
1.5 148.84 1158.05 146.00 500.00 12.68 1378.84 1014.46
1.7 208.00 1262.27 74.00 500.00 18.73 1176.54 889.85
1.9 662.72 1319.34 27.00 500.00 107.37 862.76 495.15

This table depicts for the different methods the first four moments of the distribution of
estimated α’s and the average k∗ selected in the simulations. The samples are drawn from
the symmetric stable distribution family. The column α indicates the stability parameter
for the particular symmetric stable distribution. The different methods are stated in
the first row. KS qua is the Kolmogorov-Smirnov metric measured over the quantile
dimension, see (7). KS prob is the Kolmogorov-Smirnov over the probability dimension.
TH is based on the theoretically derived optimal k from minimizing the AMSE for specific
parametric distributions, presented in Equation (17) in the Appendix. The automated
Eye-Ball method in (18) is the heuristic method aimed at finding the first stable region in
the Hill plot. For the column Drees, the k∗ is determined by the methodology described
by Drees and Kaufmann (1998). Du bo is the double bootstrap procedure by Danielsson
et al. (2001). The sample size is n = 10, 000 for 10, 000 repetitions.
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Table 8: Horse Race Fréchet distribution family
α KS qua KS prob TH 5% Eye-Ball Drees Du bo

E[α̂]

2 2.00 1.94 1.95 1.98 2.00 1.92 2.44
3 2.89 2.91 2.93 2.97 3.00 2.88 3.64
4 3.79 3.87 3.91 3.96 3.99 3.84 4.85
5 4.69 4.84 4.88 4.95 4.99 4.80 6.08
6 5.60 5.81 5.86 5.93 5.98 5.77 7.28

E[α̂2]

2 4.46 3.75 3.82 3.92 4.08 3.70 22.87
3 9.06 8.45 8.60 8.82 9.09 8.31 50.46
4 15.39 15.02 15.28 15.68 16.06 14.78 89.72
5 23.41 23.46 23.88 24.51 25.04 23.10 141.00
6 33.25 33.79 34.38 35.29 35.99 33.26 201.86

E[α̂3]

2 11.07 7.28 7.48 7.79 8.43 7.11 2023.09
3 30.46 24.58 25.24 26.28 27.84 24.00 6753.49
4 66.08 58.26 59.83 62.30 65.21 56.89 1.6 ∗ 104
5 122.80 113.79 116.86 121.69 126.71 111.13 3.1 ∗ 104
6 206.43 196.62 201.93 210.27 218.03 192.03 5.4 ∗ 104

E[α̂4]

2 30.47 14.14 14.66 15.50 17.68 13.69 3.5 ∗ 105
3 109.01 71.56 74.20 78.47 86.19 69.32 1.8 ∗ 106
4 297.94 226.17 234.51 248.00 267.06 219.10 5.6 ∗ 106
5 672.05 552.17 572.53 605.46 646.01 534.97 1.4 ∗ 107
6 1331.32 1144.99 1187.20 1255.48 1329.48 1109.32 2.8 ∗ 107

E[k̂∗]

2 217.09 1028.10 928.00 500.00 18.98 1500.70 681.63
3 220.58 1028.10 928.00 500.00 34.88 1500.70 682.25
4 223.81 1028.10 928.00 500.00 51.37 1500.85 682.25
5 227.56 1028.10 928.00 500.00 67.34 1501.00 685.21
6 229.79 1028.10 928.00 500.00 83.19 1501.00 682.25

This table depicts for the different methods the first four moments of the distribution
of estimated α’s and the average k∗ selected in the simulations. The samples are drawn
from the Fréchet distribution family. The column α indicates the shape parameter for
the particular Fréchet distribution. The different methods are stated in the first row. KS
qua is the Kolmogorov-Smirnov metric measured over the quantile dimension, see (7).
KS prob is the Kolmogorov-Smirnov over the probability dimension. TH is based on the
theoretically derived optimal k from minimizing the AMSE for specific parametric distri-
butions, presented in Equation (17) in the Appendix. The automated Eye-Ball method
in (18) is the heuristic method aimed at finding the first stable region in the Hill plot.
For the column Drees, the k∗ is determined by the methodology described by Drees and
Kaufmann (1998). Du bo is the double bootstrap procedure by Danielsson et al. (2001).
The sample size is n = 10, 000 for 10, 000 repetitions.
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Table 9: Horse Race ARCH processes
α KS qua KS prob TH 5% Eye-Ball Drees Du bo

E[α̂]

2 3.75 2.36 3.60 3.10 3.61 2.78 6.39
3 4.77 2.61 5.07 3.73 4.61 3.38 9.34
4 5.46 2.72 6.29 4.07 5.18 3.73 11.45
5 5.94 2.79 7.31 4.26 5.45 3.94 13.35
6 6.29 2.82 8.13 4.38 5.57 4.08 15.38

E[α̂2]

2 14.63 5.60 13.12 9.64 13.16 7.77 177.09
3 23.27 6.82 26.20 13.95 21.45 11.47 566.05
4 30.33 7.43 40.77 16.55 26.99 13.95 495.71
5 35.87 7.77 55.38 18.16 29.99 15.59 721.69
6 40.06 7.97 68.94 19.19 31.29 16.70 2222.75

E[α̂3]

2 59.42 13.25 48.35 30.04 48.56 21.78 3.1 ∗ 104
3 116.31 17.83 138.42 52.23 100.43 39.10 2.9 ∗ 105
4 171.51 20.26 272.14 67.54 141.63 52.51 9.8 ∗ 104
5 219.58 21.66 435.92 77.56 166.23 62.04 1.7 ∗ 105
6 258.40 22.53 611.46 84.27 177.58 68.81 4.9 ∗ 106

E[α̂4]

2 250.24 31.41 180.21 93.86 181.12 61.34 1.1 ∗ 107
3 594.13 46.63 746.77 196.03 473.62 133.96 2.6 ∗ 108
4 986.00 55.28 1872.84 276.02 748.26 198.59 3.8 ∗ 107
5 1363.92 60.46 3568.88 331.86 929.11 248.19 6.6 ∗ 107
6 1687.53 63.72 5694.45 370.66 1017.89 284.93 1.6 ∗ 1010

E[k̂∗]

2 242.85 1319.92 122.00 500.00 54.60 849.77 76.35
3 157.57 1321.28 55.00 500.00 82.84 724.81 39.36
4 117.82 1322.05 36.00 500.00 115.79 669.00 24.35
5 97.31 1322.23 28.00 500.00 147.39 639.94 17.96
6 88.35 1322.48 24.00 500.00 175.83 622.50 14.66

This table depicts for the different methods the first four moments of the distribution of
estimated α’s and the average k∗ selected in the simulations. The samples are drawn from
ARCH processes. The column α indicates tail index of the unconditional distribution
of the particular ARCH process, see Appendix A.1. The different methods are stated
in the first row. KS qua is the Kolmogorov-Smirnov metric measured over the quantile
dimension, see (7). KS prob is the Kolmogorov-Smirnov over the probability dimension.
TH is based on the theoretically derived optimal k from minimizing the AMSE for specific
parametric distributions, presented in Equation (17) in the Appendix. The automated
Eye-Ball method in (18) is the heuristic method aimed at finding the first stable region in
the Hill plot. For the column Drees, the k∗ is determined by the methodology described
by Drees and Kaufmann (1998). Du bo is the double bootstrap procedure by Danielsson
et al. (2001). The sample size is n = 10, 000 for 10, 000 repetitions.
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Table 10: Descriptive statistics stock data estimates
Left Tail Right Tail

KS qua KS pr 5% Eye-Ball Drees Du bo KS qua KS pr 5% Eye-Ball Drees Du bo
Mean 3.24 2.34 2.68 3.20 2.42 6.03 3.44 2.40 2.78 3.30 2.46 6.94
Median 3.16 2.31 2.65 3.19 2.36 3.63 3.40 2.39 2.76 3.28 2.41 3.88
St. Dev. 0.89 0.31 0.42 0.60 1.44 10.69 0.86 0.32 0.44 0.62 0.44 13.52

Min 0.58 0.99 0.95 0.52 0.31 0.34 0.65 1.00 1.00 0.33 0.36 0.94
Max 7.13 4.80 6.01 6.95 109.68 390.71 7.62 4.14 5.77 6.59 6.98 571.02

Skewness 0.34 0.69 0.64 0.21 66.70 14.42 0.34 0.26 0.42 0.23 1.64 17.66
Kurtosis 3.10 5.45 4.94 3.96 4, 946.40 367.43 3.35 4.26 4.70 3.59 12.81 571.93

(a) Estimates α (k∗)i
Left Tail Right Tail

KS qua KS pr 5% Eye-Ball Drees Du bo KS qua KS pr 5% Eye-Ball Drees Du bo
Mean 107.91 337.05 203.04 36.11 312.47 34.88 100.54 339.05 203.04 36.40 320.43 35.00
Median 56 250 151 28 267 10 48 252 151 29 264 7
St. Dev. 135.95 254.27 145.79 30.52 190.56 64.45 138.82 254.12 145.79 28.32 200.39 78.26

Min 1 10 60 1 1 2 1 4 60 1 1 2
Max 1, 334 1, 293 692 296 1, 385 729.20 1, 381 1, 297 692 324 1, 385 1, 236.85

Skewness 2.75 1.68 1.62 2.63 1.51 4.07 3.24 1.66 1.62 2.60 1.55 5.98
Kurtosis 13.44 5.58 5.29 13.08 6.09 25.22 17.66 5.49 5.29 14.06 5.83 54.22

(b) Estimates k∗i
This table presents descriptive statistics for α̂ (k∗)i and k∗i by applying the six different
methods to choose k∗i for left and right tail of stock returns. The data are from the CRSP
database that contains all the individual stocks data from 1925-12-31 to 2015-12-31 for
NYSE, AMEX, NASDAQ and NYSE Arca. The different methods are the KS-quantile
metric, KS test statistic, 5% threshold, automated Eye-Ball method, the iterative method
by Drees and Kaufmann (1998) and the double bootstrap by Danielsson et al. (2001).
Different statistics are calculated for the distribution of α̂. The stocks for which one of
the methods has α̂ > 1, 000 are excluded. The maximum k is cut off at 15% of the total
sample size. There are 17,918 companies included in the analysis.

Table 11: Median absolute differences between different methods
Left Tail Right Tail

KS qua KS pr 5% Eye-Ball Drees Du bo KS qua KS pr 5% Eye-Ball Drees Du bo
KS qua 0 0.87 0.58 0.45 0.81 0.74 0 1.04 0.69 0.47 0.98 0.78
KS pr 0.87 0 0.34 0.86 0.12 1.26 1.04 0 0.37 0.90 0.13 1.41
5% 0.58 0.34 0 0.52 0.31 0.87 0.69 0.37 0 0.52 0.34 1.01

Eye-Ball 0.45 0.86 0.52 0 0.80 0.45 0.47 0.90 0.52 0 0.84 0.58
Drees 0.81 0.12 0.31 0.80 0 1.16 0.98 0.13 0.34 0.84 0 1.32
Du bo 0.74 1.26 0.87 0.45 1.16 0 0.78 1.41 1.01 0.58 1.32 0

(a) Estimates α (k∗)i
Left Tail Right Tail

KS qua KS pr 5% Eye-Ball Drees Du bo KS qua KS pr 5% Eye-Ball Drees Du bo
KS qua 0 158 95 37 169 56 0 178 97 32 181 47
KS pr 158 0 99 219 48 222 178 0 100 219 45 230
5% 95 99 0 122 103 128 97 100 0 120 104 135

Eye-Ball 37 219 122 0 232 29 32 219 120 0 227 30
Drees 169 48 103 232 0 231 181 45 104 227 0 238
Du bo 56 222 128 29 231 0 47 230 135 30 238 0

(b) Estimates k∗i
This table presents the median absolute difference between α̂ (k∗)i and k∗i by applying the
six different methods to choose k∗i for left and right tail of U.S. stock returns. The different
methods are the KS-quantile metric, KS test statistic, 5% threshold, automated Eye-Ball
method, the iterative method by Drees and Kaufmann (1998) and the double bootstrap
by Danielsson et al. (2001). The stocks for which one of the methods has α̂ > 1, 000
are excluded. The maximum k is cut off at 15% of the sample size. There are 17,918
companies included in the analysis.
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C Figures

Figure 3: Simulations Brownian motion representation
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(a) Student-t
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(b) Symmetric stable
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(c) Fréchet

These plots show the simulations for the limit criterion function in (19). The parameters
are for the Student-t, symmetric stable and Fréchet distribution. They can be found
in Table 6 in Appendix B. The value of α for the different lines is stated in the legend.
Here T is 1,500. The interval between w(si)−w(si+1) is normally distributed with mean
0 and variance 1/k. The path of the Brownian motion is simulated 1,000 times. The left
figures show the average number of order statistics at which the largest absolute distance
is found for a given k (x-axis). The right figures depict the average distance found for the
largest deviation at a given k (x-axis). The left and right figures are related by the fact
that the right figures depict the distances found at the ith observation found in the left
figures for a given k.
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Figure 4: Bias quantile vs probability estimator (Pareto)
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These figures illustrate the absolute bias and variance of the quantile estimator (on page
138) and the probability estimator (on page 145) from De Haan and Ferreira (2007). In
each set of figures, the left column represents the bias, while the right column shows the
variance of the estimators. The round black dots indicate the variance for the quantile
criteria, whereas the red squares represent the bias for the probability criteria at the
specified order statistic. We simulate 10,000 observations from a Pareto distribution with
shape parameter α values of 1, 2, 3, and 4. The x-axis corresponds to the order statistic
where the criteria are calculated, and the y-axis represents the bias of the simulated
criteria.
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Figure 5: Bias quantile vs probability estimator (Student-t)
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These figures illustrate the (absolute) bias and variance of the quantile estimator (on page
138) and the probability estimator (on page 145) from De Haan and Ferreira (2007). In
each set of figures, the left column represents the bias, while the right column shows the
variance of the estimators. The round black dots indicate the variance for the quantile
criteria, whereas the red squares represent the bias for the probability criteria at the
specified order statistic. We simulate 10,000 observations from a Student-t distribution
with degrees of freedom (α) values of 1, 2, 3, and 4. The x-axis corresponds to the
order statistic where the criteria are calculated, and the y-axis represents the bias of the
simulated criteria.
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Figure 6: Pareto tail and exponential centre (KS - probability dimension)
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These figures depicts the ability of the KS test statistic to locate the starting point of a
heavy tail in an empirical distribution. The samples in these figures are drawn from an
exponential distribution, p(x) = exp(−λx), for X < xc and a scaled Pareto distribution,
p(x) = Ax−α, for X ≥ xc. We set λ = 1 and A = exp(xc)x

α
c . The sample size is 10,000

and the threshold is set to p(xc) = 0.99, so that the average number of draws from the

Pareto distribution is 100. We take the ratio k̂/k∗ to normalize the choice of k̂ relative to
the benchmark, k∗. The figures are for different values of α for the Pareto part of the
distribution. We draw 10,000 samples for each analysis.
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Figure 7: Pareto tail and exponential centre (Automated Eye-Ball)
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These figures depicts the ability of the Eye-Ball method to locate the starting point of a
heavy tail in an empirical distribution. The samples in these figures are drawn from an
exponential distribution, p(x) = exp(−λx), for X < xc and a scaled Pareto distribution,
p(x) = Ax−α, for X ≥ xc. We set λ = 1 and A = exp(xc)x

α
c . The sample size is 10,000

and the threshold is set to p(xc) = 0.99, so that the average number of draws from the

Pareto distribution is 100. We take the ratio k̂/k∗ to normalize the choice of k̂ relative to
the benchmark, k∗. The figures are for different values of α for the Pareto part of the
distribution. We draw 10,000 samples for each analysis.
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Figure 8: Pareto tail and exponential centre (Drees and Kaufmann)
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These figures depicts the ability of the method by Drees and Kaufmann to locate the
starting point of a heavy tail in an empirical distribution. The samples in these figures are
drawn from an exponential distribution, p(x) = exp(−λx), for X < xc and a scaled Pareto
distribution, p(x) = Ax−α, for X ≥ xc. We set λ = 1 and A = exp(xc)x

α
c . The sample

size is 10,000 and the threshold is set to p(xc) = 0.99, so that the average number of draws

from the Pareto distribution is 100. We take the ratio k̂/k∗ to normalize the choice of k̂
relative to the benchmark, k∗. The figures are for different values of α for the Pareto part
of the distribution. We draw 10,000 samples for each analysis.
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Figure 9: Pareto tail and exponential centre (Double bootstrap)
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These figures depicts the ability of the double bootstrap to locate the starting point of a
heavy tail in an empirical distribution. The samples in these figures are drawn from an
exponential distribution, p(x) = exp(−λx), for X < xc and a scaled Pareto distribution,
p(x) = Ax−α, for X ≥ xc. We set λ = 1 and A = exp(xc)x

α
c . The sample size is 10,000

and the threshold is set to p(xc) = 0.99, so that the average number of draws from the

Pareto distribution is 100. We take the ratio k̂/k∗ to normalize the choice of k̂ relative to
the benchmark, k∗. The figures are for different values of α for the Pareto part of the
distribution. We draw 10,000 samples for each analysis.
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Figure 10: Quantile estimation median difference (Student-t distribution)
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This figure shows the median deviation in quantile estimates, Xn−k+1(k/j)
1/α̂k presented

in Equation (6). We use k∗ from the different methodologies to estimate α(k∗) and the
scale parameter A(k∗) for the quantile estimator. The 10,000 samples of size n = 10, 000
are drawn from the Student-t distribution family with the shape parameter indicated at
the top of the picture. The i on the horizontal axis gives the probability level (n−i)/n at
which the quantile is estimated. Moving rightwards along the x-axis represents a move
towards the centre of the distribution.
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Figure 11: Quantile estimation median difference (symmetric stable distribution)
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This figure show the median difference induced by using the quantile estimator presented
in Equation (6). We use the k∗ from the different methodologies to estimate α(k∗) and
the scale parameter A(k∗) for the quantile estimator. The 10,000 samples of size n =
10, 000 are drawn from the symmetric stable distribution family with the shape parameter
indicated at the top of the picture. The i on the horizontal axis gives the probability level
i/n at which the quantile is estimated. Moving rightwards along the x-axis represents a
move towards the center of the distribution.
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Figure 12: Quantile estimation median difference (Fréchet distribution)
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This figure show the median difference induced by using the quantile estimator presented
in Equation (6). We use the k∗ from the different methodologies to estimate α(k∗) and the
scale parameter A(k∗) for the quantile estimator. The 10,000 samples of size n = 10, 000
are drawn from the Fréchet distribution family with the shape parameter indicated at the
top of the picture. The i on the horizontal axis gives the probability level i/n at which the
quantile is estimated. Moving rightwards along the X-axis represents a move towards the
center of the distribution.
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Figure 13: α̂ (k∗) and k∗ for quantile metrics (Student-t distribution)
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This figure depicts simulation results of the average k∗ and α(k∗) for a given level of T for different
metrics. Here T is the number of extreme-order statistics over which the metric is optimized. The upper
four graphs depict the optimal α(k∗) and the lower four graphs show the choice of k∗ for different values
of T . We use the KS-quantile metric, mean squared distance, mean absolute distance and the criteria
used by Dietrich et al. (2002). For the simulations we draw a sample of 10,000 from a Student-t(α)
distribution.
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