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1 Introduction

A wide variety of economic data and natural processes exhibit scaling behavior, in the sense that

one variable varies as a power of another variable. Distributions with such tail behavior only have

bounded moments up to the value of the tail index and are therefore referred to as heavy-tailed dis-

tributions. In economics, scaling behavior is found in wealth and income (Atkinson and Piketty,

2007), firm size (Axtell, 2001), executive compensation (Baker et al., 1988), productivity (Help-

man et al., 2004) and stock markets (Jansen and Vries, 1991). More generally, scaling behavior

is found in a variety of natural processes, such as internet data traffic (Resnick, 1997), city size

(Gabaix, 1999) and natural disasters (Pisarenko and Rodkin, 2010).

Considerable attention in economics has been paid to time series characterized by heavy-tailed

innovations, like returns to financial investments. Since investors generally choose a portfolio

from a multitude of different assets, recent literature also investigates the cross-sectional scaling

behavior. Kelly and Jiang (2014), Almeida et al. (2022), Andersen et al. (2024) and Faias (2023)

estimate the tail index from cross sections of US stock returns. They find that the tail index varies

considerably through time. Additionally, Karagiannis and Tolikas (2019), Atilgan et al. (2020)

and Agarwal et al. (2017) use measures (such as Value-at-Risk) related to the tail shape in cross

sections to expose risks of different assets not priced by previously known factor models.

The statistical properties of scaling behavior estimates in repeated cross-sectional data remain

under explored. Some of the authors are aware of a possible bias and first clean the returns for e.g.,

the FF-3 factors. But this requires knowing the right factors and necessitates time series estimation

of their coefficients, possibly introducing other biases. Our correction methods, however, do not

require knowledge or identification of such factors, since we exploit how these factors bias the tail

estimates in opposite directions depending on the upper or lower tail. So we use information as to

how factors impinge on the tail estimates without having to know the factors. This bias is due to

the Hill estimator’s non-location invariant property, i.e., adding a constant to the data changes the
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tail exponent estimate. As factors vary over time, it causes the cross-sectional distribution to shift

and change the tail index estimate. This links variation in tail index estimates to the non-heavy

tailed part of the data generating process (DGP), risking false inference.

Our theoretical framework, assumes the data are generated by a linear factor model with heavy-

tailed idiosyncratic shocks. Furthermore, assume that the scaling behavior is identical for all id-

iosyncratic shocks in the cross section, implying equality of the tail indices. In this setup, the

tail index of the dependent variable equals the tail index of the idiosyncratic noise. We derive the

asymptotic distribution of the estimator for the dependent variable and show that cross-sectional

estimates of the tail index are biased. Furthermore, our analysis shows that this bias varies with the

size of the factor realizations at different points in time. Interestingly, the factor induces bias to go

in opposite directions for left and right tail index estimates. If one does not correct for the bias this

may lead one to misinterpret bias fluctuations for time varying tail indices. Through simulations

and real data we demonstrate that this feature is empirically important.

Typically bias reduction in tail estimation is not straightforward as it hinges on second-order pa-

rameters that are difficult to estimate. Fortunately, the current case is easier to handle due to the

fact that the biases in the two tails run in opposite directions. We suggest two simple-to-implement

procedures to alleviate the bias due to the shift in location originating from the factors. The first

method takes advantage of the symmetry in the bias for the left and right tail estimates. By taking

the average of the left and right tail estimates, the location shift is offset. Under tail symmetry, this

not only cancels out the bias, but also reduces the variance of the estimator.

A second approach is to subtract the average of the dependent variable in the cross section from

each observation before one applies the tail index estimator. This approach does not require the

assumption that the left and right tail have the same tail shape. And, this method has the added

benefit that it allows the left and right tail indices to be estimated separately. In a simulation exer-

cise we show that both asymptotically justified methods alleviate bias caused by a cross-sectional

location shift for intermediate sample sizes.
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To test for the direction and size of the bias in real world data, we use monthly US stock returns and

annual US Census county population data. Both datasets contain a wide cross section and a long

time-series. The wide cross section is vital for accurate tail index estimation. The long time-series

dimension helps to elicit the effect of the bias caused by the linear factor structure.

The linear factor structure is the workhorse model for explaining asset prices empirically (see e.g.,

Fama and French (2015); Stambaugh and Lubos (2003)). Cochrane (2009) shows that under mild

restrictions, asset returns naturally follow from a linear factor structure. The combination of an

innate factor structure, wide cross section and long time-series dimension provides an ideal setting

for a first test case. Assuming a linear five-factor model, we isolate the effect of the variation that

a single factor contributes to the bias in cross-sectional tail index estimates. When considered in

isolation, correlation between tail index estimates and factors explains a considerable amount of

the variation in the estimated tail index over time. As predicted on the basis of our theory, we find

that the bias indeed induces a negative correlation between the left and right tail index estimates.

Moreover, correcting the bias causes the time series of left tail estimates to be smoother. The high

(less heavy tail) estimates during financial market turmoil become more inline with the surrounding

low (heavy) tail exponent estimates. For example, the biased left tail exponent estimate for the 1973

crisis is adjusted downwards from 4.3 to 3.4, implying the fourth moment of the cross-sectional

distribution does not exist. For the right tail the opposite occurs. Very heavy-tailed (biased) crisis

estimates adjust to become lighter than the average right tail estimate, i.e., extreme positive returns

are now modelled to occur less frequently during crisis times.

A second test case is based on county-population data motivated by literature on the heavy-tailed

nature of geographical population clustering (Gabaix (1999); Eeckhout (2004); Rozenfeld et al.

(2011)). Furthermore, the abundance of data in both time-series and cross-section dimensions

makes this dataset amenable to our analysis. However, the difference with the financial data is

that a clear factor structure is lacking. In the literature review by Chi and Ventura (2011), a large

number of possible factors are identified that may explain population growth. We use five principal
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components to summarize a large subset of the proposed factors. The lack of explanatory power

of the factors behind population growth induces less correlation between the bias and the prin-

cipal components. Nevertheless, the correlation is still significant and in the predicted direction.

The contrast in results with the first test case underlines that a DGP with factors that have strong

explanatory power suffers more severely from the cross-sectional bias.

There are three main contributions that we want to highlight. First, on the theory side we derive the

asymptotic distribution of the cross-sectional estimator under a linear factor structure. This differs

from literature that studies bias correction for a single cross-section or time series under the i.i.d.

assumption, see for instance Beirlant et al. (2012) for an overview of this literature. Our article

is related to a small but growing literature on the effects of heteroskedasticity in extreme value

analysis. In particular, Einmahl et al. (2016) allow for variation in the first-order scale parameter,

but do not focus on how this affects the bias. In the case at hand it turns out that the bias is the

main issue and stems from variation in the second-order scale parameter.

The second contribution of this work, to the best of our knowledge, is highlighting that the time-

varying nature of the bias, and the drivers of this variation, have largely gone unnoticed. It is well

known that the Hill estimator is non-location invariant, which induces bias. Moreover, most cross-

sectional studies focus on a single cross section, making it difficult to detect the source of this bias.

Only recently have repeated cross sections been employed to estimate time variation in scaling

behavior, underscoring the need to investigate the impact of location shifts in the cross-sectional

distribution over time.

Third, we propose three solutions to alleviate the bias. The first method is standard in extreme value

theory (EVT). With a sufficient number of data, one can increase the tail threshold to decrease the

bias, however, this comes at the cost of increasing the variance of the estimator. But in cross-

sections, data limitations constrain the use of this approach. The second method is inspired by

Ivette Gomes and Oliveira (2003), who suggest to deduct a tuning parameter from the data. For

the case at hand we show that one can use the cross-sectional average as the tuning parameter.
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The third approach, which is specific to the cross-sectional structure of the data, is our own mirror

estimator.

The paper is structured as follows. Section 2 derives the asymptotic distribution of the cross-

sectional Hill estimator and introduces the two proposed estimators to alleviate the bias. Section 3

describes the data used in the two empirical illustrations. Subsequently, Section 4 documents the

bias and evaluates the newly proposed estimators followed by the conclusion.

2 Theory

Consider a linear factor model with n factors Gi, i “ 1, ...,n and idiosyncratic shocks X j. At any

point in time the dependent variable Yj (omitting superfluous time indices on Yj, Gi and X j) for

cross-sectional entity j is

Yj “

n
ÿ

i“1

γi jGi`X j,

To be specific, in the finance application the Y j’s are logarithmic excess returns and in our other

application the data are logarithmic population growth rates. The factors Gi are stochastic over

time. Further, the coefficients γi j are assumed to be fixed. Define, as a shortcut:

H j “

n
ÿ

i“1

γi jGi.

Thus at a specific point in time

Y j “ H j`X j. (1)

The H j are allowed to vary stochastically over time. However, as factors Gi do not vary over the

cross-section observations and the γi j are fixed, H j is functionally a constant for tail behaviour in

the cross-section. We can therefore speak of the conditional distribution PrpH j`X j ď s|H j “ h jq.

The X j are non-normally heavy-tailed distributed, like in the case of a Student-t distribution. That
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is, the tail of the distribution follows a power law in the sense of regular variation. To define the

concept of regular variation, let Gp.q denote a cumulative distribution function (cdf). For the left

tail, regular variation entails:

lim
tÑ8

Gp´txq
Gp´tq

“ x´α ,

and for the right tail:

lim
tÑ8

1´Gptxq
1´Gptq

“ x´α ,

with x ą 0 and α ą 0 (the left and right α’s need not be equal). The α is known as the tail index.

The class of regularly varying distributions is closed under addition (convolutions).

The power decline implies self-scaling behavior. This follows most clearly from Feller’s convolu-

tion theorem. If two independent Xi’s vary regularly at infinity and follow the same distribution,

then lim
sÑ8

PrpX1`X2 ą sq{PrpX1 ą sq “ 2, thus the scale changes but the tail index does not. Fur-

thermore, as moments only exist up to α , i.e., E | Xi |
pă 8 for p ă α , a decrease in α gives a

heavier tail. For both applications the heavy-tail assumption is backed by the empirical literature.

The X j are i.i.d. random variables both from a cross-section and a time-series perspective. This as-

sumption is build into most asset pricing models. For instance, the most relied upon asset pricing

model for empirical applications, Arbitrage Pricing Theory, explicitly assumes that the idiosyn-

cratic shocks are cross-sectionally uncorrelated. This prevents the DGP from describing any ar-

bitrary set of returns. However, we could accommodate cross-sectional dependence in X j. In this

case, the Hill estimator is still consistent, but comes with wider confidence intervals.

Below we first describe how α for Yj can be estimated, assuming the X j are exactly Pareto dis-

tributed. Then we investigate how the estimator is influenced by a fixed factor h j. We show that

h j induces a bias in the cross-sectional estimates. Interestingly, the bias in the two tails are of the

opposite sign. Lastly, we consider how the bias can be remedied, exploiting the sign difference.
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2.1 Hill estimator

We consider Hill (1975)’s estimator to estimate α . Let Yp jq denote the descending order statistics

from a cross section of m observations Y j:

Yp1q ě Yp2q ě ...ě YpKq ě uě YpK`1q ě ...ě Ypm´1q ě Ypmq.

The Hill estimator uses the K ăm highest-order statistics above threshold u to estimate the (inverse

of the) tail index α . For the lower tail estimate, one takes the negative of the observations and

reorders these from high to low. The threshold u is typically chosen as a percentage of the sample

size m (and deep into one of the tails); we suppress the dependency of u on m whenever possible,

otherwise we write um. The Hill estimator calculates the average logarithmic difference between

the threshold and the higher-order statistics:

1
α̂
“

1
K

K
ÿ

i“1

ln
ˆ

Ypiq
u

˙

. (2)

If the sample is drawn from a standard Pareto distribution, the Hill estimator coincides with the

maximum likelihood estimator. In this case all observations can be used, i.e., u“ 1. Given that the

estimator is unbiased in the pure Pareto case, u “ 1 is optimal in the sense of lowest variance. In

other cases, like the Student-t distribution, only the tail of the distribution resembles the Pareto tail

and u must be chosen in the tail area to reduce bias. There are two versions of the Hill estimator:

one is with a fixed threshold u as in (2), while the other uses one of the upper-order statistics,

Ypk`1q, as a threshold. In the fixed threshold version, the K number of order statistics exceeding u

is random, otherwise the threshold is random.1

1Goldie and Smith (1987) argue that ”In practical terms, there is little to choose between these two points of view.”
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2.2 Single observation

To explain most clearly the effect and, consequently, the difference in sign due to the bias caused

by the h j, we first consider a single observation X drawn from a standard Pareto distribution,

Gpxq “ 1´ x´α

on r1,8q. Take u ą 1 as one would do in the general case. In repeated samples, suppose one

records a zero if X ă u and otherwise records lnpX{uq. The expected value of estimator (2) is the

conditional expectation

E
„

ln
X
u
|X ą u



“
α

u´α

ż 8

u
pln

x
u
qx´α´1dx“

1
α
. (3)

This shows that the expectation of the Hill estimator from a standard Pareto sample of just one

observation is unbiased, even if we choose uą 1.

Next consider the case with a non-zero fixed location shift, h‰ 0, added to the idiosyncratic noise

as in (1). For large s, a first-order Taylor approximation around hs´1 “ 0 yields an expression for

the tail of the distribution of Y :

PrtY ď su “ PrtX `hď su “ 1´ps´hq´α

“ 1´ s´α
r1`αhs´1

`ops´1
qs. (4)

Apply the expectation in (3) twice to get

E
„

ln
Y
u
|Y ą u



“
1
α
´

1
α`1

hu´1
`o

`

u´1˘ . (5)

In comparison to (3), we now have an additional term signifying the bias due to the location shift.

(See the online Appendix for a more detailed derivation.)
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The location shift has a different effect when considering the left tail. If the idiosyncratic noise

term again follows a standard Pareto distribution, then

PrtY ď´su “ Prt´X ą s`hu “ ps`hq´α

“ s´α
r1´αhs´1

`o
`

s´1˘
s. (6)

This again results in a bias dependent on h:

E
„

ln
Y
u
|Y ď´u



“
1
α
`

1
α`1

hu´1
`o

`

u´1˘ . (7)

The bias, however, is of the opposite sign. This implies that h biases the left and right tail index

estimates in opposite directions. Furthermore, the two biases are each other’s mirror image.

In general, heavy-tailed distributions, i.e., distributions that vary regularly at infinity, only resemble

the Pareto distribution in the tail area. That is to say, these distributions have second-order terms

not due to a shift. For example, the Student-t satisfies the following expansion:

Gpxq “ 1´Ax´α
r1`Bx´θ

`opx´θ
qs. (8)

Here α ą 0, A ą 0, θ ą 0 and B is a real number. In fact, most known heavy-tailed distributions

satisfy this so-called Hall expansion (Hall and Welsh, 1985). The expansion also applies to the

stationary distribution of an (G)ARCH process, see e.g., Sun and Vries (2018). In the remainder

of the paper we assume that expansion (8) applies with θ ą 1, as is the case for the Student-t

distribution and the (G)ARCH processes. One shows that if θ ą 1, the first-order bias terms are as

in (5) and (7), i.e., the second-order term is only of order o
`

u´1
˘

.
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2.3 Cross section

Following the bias based on a single observation, we examine how the Hill statistic fares for multi-

ple observations in a cross section with location shift h j and idiosyncratic shocks X j. Suppose that

the X j satisfy (8) and that the tail indices α and θ ą 1 do not vary cross-sectionally. In that case

(4) and (6) adhere to the following general expansion:

G jpxq “ 1´Cx´α
r1`D jx´1

`op1qs. (9)

Here D j captures the specific second-order scales as in (4) and (6) for the j-th observation, i.e., αh j

and´αh j respectively for the right and left tail data. We also allow the first-order scale parameters

C to be different from 1.2 In the online Appendix, we relax the assumption that the powers are the

same. In large samples, the X j with the lowest α j dominate. For smaller samples, we show that

the idiosyncratic shocks with less heavy tails also contribute to the bias. The cross-sectional tail

estimate is then a weighted average of the tail indices of the cross section.

In the cross section let H̄ “ 1
m
ř

h j be the cross-sectional average shift. Furthermore, suppose that

lim
mÑ8

H̄ “ ¯̄H exists. Similarly, for the left tail data we then have ´ ¯̄H, c.f. to (6). Given this setting,

we have the following general result:

Proposition 1 Suppose the X j are independently distributed with distribution function that con-

forms with the expansion as in (8), have the same α , same scale A and θ ą 1. Then the distribution

of Y j “ h j`X j satisfies the upper tail expansion in (9) as xÑ8. Consider the distribution of the

2The first-order scale coefficient C may also vary in size. This affects the size of the bias and the variance of the

limiting distribution. The effect is quantitatively very minor in nature. For the sake of simplicity we only present the

proof with fixed C, but a varying C can be easily accommodated. Einmahl and He (2023) show that the tail index

estimates remain consistent if the first-order scale coefficients differ.
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Hill estimator
1

pαpmq
“

m
ÿ

j“1

ˆ

ln
Yp jq

um

˙

1Yp jqąum

for mÑ8 such that

um “ m1{pα`2q

it follows that 1{α̂pmq, appropriately scaled, has the following limit normal distribution:

m1{pα`2q
ˆ

1
pα pmq

´
1
α

˙

d
Ñ N

ˆ

´
1

α`1
¯̄H,

1
α2

1
C

˙

.

Proof See Appendix A.

Corollary 1 For the lower tail data the complementary result is

m1{pα`2q
ˆ

1
pαpmq

´
1
α

˙

d
Ñ N

ˆ

1
α`1

¯̄H,
1

α2
1
C

˙

.

The typical Hill estimator as presented in e.g., Haan and Ferreira (2006), assumes identical first

and second-order scales and tail indexes. The difference here is that we allow for variation in the

second-order scales. Therefore, the bias term now contains the expectation of the second-order

scale coefficients. A priori, we do not know the sign of
ř

h j at a certain point in time, but its effect

on the bias of the left and right tail estimates of α is such that these are of opposite sign.3

From hereon for the purpose of clarity we introduce a superscript on α to indicate the data the

estimate refers to, e.g., in case of the raw data we use Y . The subscript notes to which tail the

estimate refers (”` ” for the right tail and ”´ ” for the left tail). The above proposition implies:

3Furthermore, since the estimation is based on data from the tail only, the typical rate is lower than the square

root of the sample size. The asymptotic distribution with the rate that minimizes the asymptotic mean squared error is

presented in Appendix A.
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Corollary 2 For the tail index estimated on the upper tail data

BBiasp1{α̂Y
`q{B

¯̄H “´
1

α`1
.

and

Corollary 3 For the tail index estimated on the lower tail data

BBiasp1{α̂Y
´q{B

¯̄H “
1

α`1
.

Specifically, consider, e.g., the one factor model where h j “ γ jg. Take for example the Capital

Asset Pricing Model, where g is the market excess return. In that case

BBiasp1{α̂Y
`q

Bg
“´

¯̄γ
α`1

,

where ¯̄γ “ lim
mÑ8

γ̄ and γ̄ is the average of the m number of different γ j coefficients. Thus, if the

market factor is positive and increases, this affects all Yj with a positive coefficient γ j in such a way

that the downward bias in the Hill statistic becomes more severe. For the left tail data the opposite

result applies. As the factor g varies over time the above result implies a positive correlation

between the factor and the upper tail index estimate, α̂Y
`. Moreover, the bias also generates a

negative correlation between the left and the right tail index estimates.4

Suppose one wants to identify the contribution of the individual factors to the bias. Assuming one

knows the factors, this can be done, to some extent. By estimating the γi j and deducting the sum of

the γ̂i jgi from the Yj. Assume that the parameters γi j are constant over time and can be recovered

4A third-order expansion, provided in the online Appendix, reveals that some higher-order terms have the same

sign for the left and right tail. This implies that, even though the second-order term dominates the correlation, the

biases in the left and right tail are likely not perfectly negatively correlated.
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from a time-series regression. Consequently, the estimate of idiosyncratic noise from the linear

factor model reads:

X̂ j “ Yj´

n
ÿ

i“1

γ̂i jgi.

Consider the (estimated) bias contribution of an individual factor, say g f . To this end, define the

semi-residual with respect to g f :

S f
j “ Y j´

ÿ

i‰ f

γ̂i jgi. (10)

Thus S f
j contains the estimated contribution of the remaining factor γ f g f and the idiosyncratic

noise X j.

The contribution to the total bias by the factor g f can be gauged by the difference between the tail

index estimate of the semi-residual and the tail index of the estimated idiosyncratic noise:

1
∆ f “

1
α̂S f ´

1

α̂ X̂
. (11)

If one ignores the estimation error in the γ̂i j and θ ą 1, then the contribution to the bias is approx-

imately equal to

Biasp1{∆ f
`q “ ´

1
1`α

lim
mÑ8

¨

˝

1
m

m
ÿ

j“1

γ f jg f

˛

‚. (12)

The RHS isolates the bias contributed by factor f , with a different sign for the left tail. Given

positive coefficients γ f j, one expects a negative correlation between 1{∆ f
` and g f in the right tail.

Recall that α has the intuitive interpretation as the number of bounded moments. For this reason,

in the empirical application we report how α , instead of 1{α , relates to a factor. This implies that

the signs of the biases, like in Proposition 1, change direction.

From Proposition 1 it can be noted that the size of the bias diminishes with the size of the threshold

um. This opens up the possibility to reduce the bias by increasing the threshold um. For this reason

we report correlation estimates at two different thresholds: 5% (the conventionally used threshold)
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and 0.5% of the sample fraction. There is a limit to how deep one can go into the tail area, i.e.,

how high one can take um. If the threshold increases at too high a rate, this diminishes the bias but

raises the variance. Conversely, if um increases at a slower rate, the bias dominates asymptotically.

The typical approach in tail index estimation tries to strike a balance between the two vices. That

is why we consider two alternative methods of bias correction.

2.4 Bias correction in Hill estimates

The characterization of the bias in the Hill estimates specified in (5) and (7) suggests two potential

methods of bias correction. First, under tail symmetry one can exploit the opposite sign of the

bias in the left and the right tail. The average of the two cross-sectional Hill estimates (1{α̂mirror)

could reduce the bias due to the factor structure. If one is unsure about tail symmetry, one may

also reduce the bias on a per-tail basis by removing the cross-sectional mean from the dependent

variable, i.e., Y j ´ ErYjs. Furthermore, for both methods no prior knowledge of the factors is

required. We consider both methods below.

2.4.1 Exploiting the mirror image

To a first order, the bias in the cross-sectional Hill estimates is caused by the contribution of the

factor realizations. As we show in (5) and (7), the bias terms are their mirror images under tail

symmetry. This gives an opportunity for bias reduction by taking the average of the left and right

tail index estimates.

If the tails of the distribution of the X j are symmetric, taking the average of the left tail estimate

1{α̂Y
´ and the right tail estimate 1{α̂Y

` yields a new estimator. Noting Proposition 1 and Corollary

1, the new estimator has asymptotic normal distribution:

m1{pα`2q
´ 1

α̂mirror ´
1
α

¯

“ m1{pα`2q
´1{α̂Y

´` 1{α̂Y
`

2
´

1
α

¯

d
Ñ N

´

0;
1

2α2C

¯

.
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The mirror method exploits that in a large cross section any γ j has an equal probability of appearing

in either tail if the idiosyncratic shock X j dominates the tail behavior of Yj. Due to the law of large

numbers, as mÑ8 and kÑ8, asymptotically the left and right tail are each other mirror images

and hence the asymptotic bias evaporates at a higher rate.5 Thus there is a double benefit of taking

the average: the bias is reduced and the variance is halved.

2.4.2 Exploiting the cross-sectional mean

The procedure described above is less meaningful, if the tail indices on the left and the right side

of the distribution differ. If the bias is caused by a factor shift, one correct the bias by shifting the

data back in the other direction (henceforth referred to as the shift method). This is similar to the

procedure outlined in Ivette Gomes and Oliveira (2003). Consider the following revised estimator:

1
α̂Y´Y

“
1
m

m
ÿ

j“1

lnp
Yj´Y

u
q1Y j´Yąu.

The idea is that by subtracting the average of the cross section of Yj, factor contributions that

generate the bias are more or less netted out. But the variance remains as 1{pα2Cq. For ease of

interpretation, we state the bias for this estimator under the assumption of a one-factor model, i.e.,

i“ 1. By demeaning the observations in the cross-section we get

Yj´Y “ pγ j´
1
m

m
ÿ

j“1

γ jqg`X j´
1
m

m
ÿ

j“1

X j.

The first term containing the factor is non-stochastic in the cross section. Note that the third term

on the RHS is zero as one sums over the m observations.

The second and third term contain the random elements. Our assumption is that the X j are i.i.d.

5Due to the contribution of higher-order terms in the tail expansion of X j, some bias remains; see online Appendix.
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and at large s

PrtX j ě su “Cs´α
r1`o

`

s´α
˘

s.

If the X j exhibit the same tail behavior, it follows from Feller’s convolution theorem (1971, Section

VIII, 8) that the linear combination exhibits the same tail behavior. Thus the sum also declines by

a power of α . But the scale parameter C changes, resulting in

Pr
! 1

m

m
ÿ

j“1

X j ě s
)

“ m´α`1Cs´α
p1`op1qq .

This specification allows us to use (5) to derive the bias in the right tail by substituting:

h j “ pγ j´ γqg,

(where γ “ p1{mq
řm

j“1 γ j). This yields a bias in the right tail as

Bias
´

1{αY´Y
`

¯

“´
1

α`1

´

lim
mÑ8

1
m

m
ÿ

j“1

pγ j´ γqg
¯

“ 0.

2.4.3 Simulations

To investigate the efficacy of the above methods of bias reduction in intermediate sample sizes,

we conduct simulations that are presented and discussed in the online Appendix. We simu-

late data from a linear model with Student-t distributed idiosyncratic shocks, where the tails are

(a)symmetric. The non-idiosyncratic part is either with a constant or a single factor with normally

distributed coefficients. The simulations confirm the theoretical result of the linear relationship be-

tween the value of h and the bias in Hill estimates as derived in (5) and (7). Therefore, the mirror

method produces estimates that are close to being unbiased. As the mirror method averages over

two estimates, the standard deviation of estimates is smaller, by a factor close to 1{
a

p2q. In case

the tails of the idiosyncratic shocks are asymmetric the mirror method is not applicable. Using
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the shift method is as effective in reducing the bias, forgoing the variance reduction in the mirror

method. One thing to note from the simulations with normally distributed coefficients, is that the

effect of this thin-tailed component biases the Hill estimates downwards in finite samples.

3 Data

To test for the presence, direction and size of the bias in real world data, we use monthly US stock

returns and annual US Census county population data. Both datasets are known to exhibit power

law behavior. Moreover, the data are sufficiently rich in both the time-series and cross-sectional

dimension to investigate the efficacy of our methods.

3.1 Firm stock returns

The Center for Research in Security Prices (CRSP) provides a wide cross section of firm return data

for the US equity market with 13,535 individual US traded firms. These daily data are collected

from the NYSE, AMEX, NASDAQ and NYSE Arca exchanges since 1925. In accordance with

the financial literature on asset pricing, we use monthly stock (log) returns from 1963 to 2019.6

There is a large body of literature that uses co-movement between excess returns and factors to

explain the cross-sectional variation in expected excess stock returns. The combination of the

rich dimensions of the data and the theoretical and empirical backing for a factor structure in

stock returns provides an exemplary test case to verify factor bias in tail index estimates. In line

with existing literature, we use the Fama and French (1996) three-factor model augmented by

the momentum (Mom) factor from Carhart (1997) and the liquidity factor from Stambaugh and

Lubos (2003). In unreported results, the analysis is repeated with a model where the momentum

6Following common practice in the asset pricing literature, we only include common stocks (share code 10 and

11) with a price above 5 dollars, noting that relaxing these filters leads to almost identical results.
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and liquidity factors are substituted for the Robust-Minus-Weak (RMW) and Conservative-Minus-

Aggressive (CMA) factors (Fama and French, 2015). The results are very similar.7

3.2 County population data

Another heavily researched field in power laws is the geographical distribution of population sizes.

The US Census Bureau has collected county population statistics since 1970. Analysis on the

county level offers the most consistent cross-sectional classification over time. The annual county

population data provided from the Census runs from 1970 to 2017. In contrast to the 648 time-

series dimension for the monthly US stock data, these data have a length of only 46. Moreover,

the US Census is only conducted every 10 years. Annual data are estimated using births, deaths

and net migration, including net immigration from abroad. In every Census after 2000, the county

populations for each year of the Census are updated yearly, leading to inconsistent comparisons

between the last year of the previous Census and the first of the current Census. Consequently, we

omit the years 2000 and 2010 from our data.

We conduct our analysis on the (log) growth rate of the population in line with existing literature.8

For the creation of population change, we use the Federal Information Processing Standards (FIPS)

codes, which uniquely identify counties and county equivalents in the US. The documentation on

a clear factor structure is notably weaker than for stock returns. Chi and Ventura (2011) conduct

a review of the existing literature and propose variables that can broadly be placed in one of five

categories: demographic characteristics, socio-economic conditions, transportation accessibility,

natural amenities and land development. So far, the models used to explain population growth

have varying degrees of success and significance. As there is no consensus in the literature as to

7We obtain the five Fama and French (2015) factors and the momentum factor from Kenneth R. French’s website

and the liquidity factor from Lubos Pastor’s website. Table B.1 in the Appendix, presents their pairwise correlations.
8Due to data limitations, only recently have studies (Devadoss and Luckstead, 2016; Ioannides and Skouras, 2013)

shown that the left tail also adheres to power law behavior. Our analysis considers both tails of the distribution.
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what constitutes the best combination of factors, we conduct a principal component analysis (PCA)

and extract the first five PCs. The variables used for the PCA are suggested in Chi and Ventura

(2011), which we describe in the online Appendix. By using five PCs, we avoid multicollinearity

and over-fitting, which is likely to arise in a model with many explanatory variables.

3.3 Empirical implementation

To distinguish between factor values at different instances in time, we now introduce a time index

t. To obtain estimates of X jt and semi-residuals S f
jt in (10) for factor f , we run linear time-series

regressions to estimate the factor coefficients γi j. In case of the financial application we use excess

stock returns, Y jt “ R jt ´ rt , where R jt is the log return of stock j at time t and rt is the one-month

Treasury bill rate (risk-free rate). In case of county population growth, Yjt is the percentage change

in county j’s population at time t.

Thus we run regression (including a constant):

Yjt “

n
ÿ

i“1

γi jgit `X jt for t “ 1,2, ...,T.

We repeat this for all j “ 1, ...,m entities. We use these regressions to construct estimates of the

X jt . To estimate the tail index for Yjt , X̂ jt and S f
jt , we use the Hill estimator as defined in (2).

The Hill estimator requires a choice of threshold, uk. We follow common practice of selecting the

threshold on order statistic k`1 at a fixed percentage of the sample size. Specifically, we choose

k at 5% and 0.5% of the empirical quantile to study the influence of factors in a linear model on

estimates of the tail index.
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4 Results

4.1 US financial returns

Section 2 demonstrates that the Hill estimator in (2) applied to Yjt , that is, α̂Y
t contains a specific

bias caused by underlying factors and coefficients. The first two rows in Table 1 show, as a crude

initial attempt at capturing the relation, the partial correlations between the asset pricing factors

and α̂Y
t . Note that, to interpret the signs in the table correctly we report the correlations with the

tail index, i.e., the inverses of the Hill estimates.

The correlation between tail index estimates and the market factor is particularly strong and is of

the conjectured sign. This is a first indication of the influence a factor can have in cross-sectional

tail estimation. Although somewhat smaller, the correlation for the SMB factor is still pronounced.

The correlation between the tail index and the other factors is smaller and the signs are the opposite

of what one would initially expect. This may be partly caused by the simultaneous effect that the

different factors have on α̂Y
t ; see Table B.1 in Appendix B which records the partial correlations

between all factors. Furthermore, for a given stock the coefficients for the different factors can

vary in size and sign. These issues dilute the effect of the bias caused by a single factor.

Table 1: Correlations cross-sectional tail index and factors
Market SMB HML Mom Liq

α̂Y
t´ -0.69 -0.45 0.19 0.09 0.05

α̂Y
t` 0.75 0.52 -0.12 -0.15 -0.02

∆
f
t´ -0.81 -0.81 -0.24 0.47 -0.05

∆
f
t` 0.85 0.85 0.39 -0.42 -0.04

ρp∆
f
t´,∆

f
t`q -0.91 -0.83 -0.07 -0.28 -0.02

(a) Threshold u at 5% of sample fraction

Market SMB HML Mom Liq
α̂Y

t´ -0.31 -0.25 0.04 0.10 0.00
α̂Y

t` 0.33 0.33 -0.02 -0.13 0.01
∆

f
t´ -0.51 -0.49 0.04 0.25 0.01

∆
f
t` 0.54 0.39 0.07 0.13 -0.02

ρp∆
f
t´,∆

f
t`q -0.39 -0.24 -0.11 0.15 0.03

(b) Threshold u at 0.5% of sample fraction

This table reports the correlations between the cross-sectional Hill estimates and an individual factor. In the first and second row of each panel α̂Y
t´

and α̂Y
t` are the inverses of the cross-sectional Hill estimates for the cross section of stock returns for the left and right tail, respectively. The ∆

f
t is

the cross-sectional tail index estimate where factor f ’s effect is isolated, as defined in (11). The sign ”-” (”+”), indicates that the estimate is made
on the left (right) tail of the distribution. The factor with which the correlation is calculated is reported in the first row. The last row reports the
correlation between the left and right tail estimates of ∆

f
t for the respective factors. The left panel presents the correlations where the threshold u is

set to 5% of the sample fraction, and for the right panel this threshold is set to 0.5% of the sample fraction.

To isolate the bias a single factor induces in α̂Y
t`, we use ∆

f
t` as defined in (11). Panel (a) of Figure
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1 plots the (normalized) time series of the market factor and ∆M
t`. The time series illustrate the

clear positive relationship between ∆M
t` and Mt , as predicted by the inverse of the bias in (12).

Figure 1: Mt and ∆M
t
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(a) Relationship between ∆M
t` and Mt
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(b) Relationship between ∆M
t` and ∆M

t´

These figures present the time series of the market factor (solid black line), its isolated effect on right tail ∆M
t` (blue dash-dotted line) and left tail

(red dashed line). Panel (a) shows the time series of the market factor and ∆M
t`, which are normalized due to a difference in units. Panel (b) contrasts

the right tail and left tail estimate of (not normalized) ∆M
t . The data have been annualized by averaging the monthly estimates for a given year.

In Section 2, we derived that a shift in the factor induces a bias in left and the right tail index

estimates of opposite sign. To this end, we plot the ∆M
t` and ∆M

t´ in panel (b). The two estimates in-

deed appear to be each other’s mirror image. This confirms the predictions from Proposition 1 and

Corollary 1. In the online Appendix similar figures are presented for the SMB, HML, momentum

and liquidity factors. While weaker, the relationship for the SMB and HML factors shows substan-

tial negative co-movement between the estimate of the tail index in the right and the left tail. The

momentum and liquidity factors show a weaker pattern. The relationship between the tail index

and the factors hinges on the validity of the factor structure, i.e., the relative importance of factors

and their correct specification. A number of these constructed factors are possibly poor proxies

for the factors in the DGP, leading to the weaker relationships. Another possible explanation is the

time varying explanatory power of asset pricing factors (see Hwang and Rubesam (2015)).

We summarize the patterns observed in Figure 1 for all factors by means of correlations in rows

three to five of Table 1. The third and fourth rows show that isolating the contribution of a specific

factor leads to a higher correlation between the tail index estimates and the factor. This implies that

the interaction between the factors obfuscates the relationships shown in the first two rows. The

correlations for the market and SMB factor are substantial. Isolating the effect of the HML factor
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changes the correlation in the predicted direction for both the left and right tail of the distribution.

The correlations for the momentum factor have a sign that remains somewhat counter-intuitive.

One possibility is that the observations included in the tail measurement have negative coefficients.

In unreported results we multiply the factor realization by the average of the coefficients found in

that month’s cross section, which alters the signs in the predicted direction.

The last rows of Table 1 illustrates that the effect of variation in the factors on the left and right tail

index estimates is in the opposite direction, as is apparent from Figure 1. The market and SMB

factors have the strongest effect on the cross-sectional estimate and also the strongest negative

correlation between their respective left and right tail estimates. This might be attributed to the

quality of these factors as proxies for factors in the underlying DGP.

Proposition 1 implies that the bias originating from the factors in α̂Y
t´ diminishes as threshold u

increases. In panel (b) of Table 1, we lower the percentage of the sample fraction used in the tail

estimation to 0.5%. This indeed leads to a sharp decrease in the correlations between the factors

and the tail index estimates for most factors. But using 0.5% is about how deep one can go into the

tail area. Fortunately, the two novel bias correction methods are less data demanding.

In Table 2, we report on regressions that investigate the degree to which variation in the isolated

bias ∆
f
t explains variation in the cross-sectional Hill estimate of Yt , i.e., α̂Y

t . Panel (a) shows results

for the right tail index estimates. The coefficients for the Market and SMB factors are significantly

different from zero, resonating the strong correlations in Table 1. The R2 of the first regression for

the right tail shows that about 42% of the variation in the cross-sectional tail index is driven by

the market factor. The second most important factor is the SMB factor, which contributes about

12% to the variation in α̂Y
t`. The HML, momentum and liquidity factors have a marginal role in

explaining variation in α̂Y
t`. Similar regression results for the left tail are reported in the right side

of the table. The contribution of the individual factors are quantitatively similar in the left tail.9

9Regression results (unreported) for the factors (instead of ∆
f
t ) are very similar.
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Table 2: Regression cross-sectional tail index and factors
right tail left tail

∆M
t` ∆SMB

t` ∆HML
t` ∆Mom

t` ∆
Liq
t` α̂ X̂

t` ∆M
t´ ∆SMB

t´ ∆HML
t´ ∆Mom

t´ ∆
Liq
t´ α̂ X̂

t´

coef. 0.95˚˚˚ 0.90˚˚˚ 0.31 ´0.40 ´0.25 0.52˚˚˚ 0.96˚˚˚ 0.82˚˚˚ 0.00 ´0.46 0.79˚˚ 0.78˚˚˚

s.e. (0.05) (0.10) (0.27) (0.31) (0.40) (0.08) (0.05) (0.10) (0.30) (0.32) (0.38) (0.06)

R2 0.42 0.12 0.00 0.00 0.00 0.07 0.33 0.10 0.00 0.00 0.01 0.24

This table presents the regression results for the effect of the factors on the cross-sectional Hill estimate. The dependent variable in the left panel is
the Hill estimate for the right tail of the raw cross-sectional excess returns (α̂Y

t`). The independent variable is the cross-sectional tail index where

the factor f ’s effect is isolated (∆ f
t`). In the last column of the left panel, α̂ X̂

t` is the tail index estimated on the fitted idiosyncratic noise terms
of the five-factor asset pricing model. We include an unreported constant in the regressions, which are significant and positive for all regressions.
The right side illustrates the results for the left tail of the distribution. The threshold u used to estimate the Hill estimate is set to 5% of the sample
fraction. The asterisks in the table indicate: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.

The explanatory power of the idiosyncratic part of the linear factor model explains only about 7%

of the variation in the right tail index estimate. This suggests that indeed most variation in cross-

sectional tail index estimates stems from variation in the factor realizations. This is somewhat

different for the left tail. The R2 of the regression with the tail index of the idiosyncratic shocks is

24%. Aside from correlated measurement errors and variation in α , we may not have isolated all

the factors that influence stock returns.

Unreported results of a multi-variable regression to investigate the contribution of all individual

factors together on α̂Y
t`, shows that the contributions of all factors are significant and produce a

high R2 of 64%. This suggests that each factor contributes significantly to the bias, even when

considering the correlation amongst the factors. The results for the left tail are comparable.

Table B.2 in Appendix B presents the regression results for a threshold based on the 0.5% sample

fraction. For this more extreme threshold, only a small share of the variation in α̂Y
t is explained by

the individual factors. The role of the bias caused by the factor diminishes by looking deeper into

the tail, i.e., increasing the threshold u. In this case, variation in α̂ X̂
t explains about 51% for the right

and 58% for the left tail of the variation in α̂Y
t . Abstracting away from correlated measurement

errors, the increase in R2 for X̂ j strongly suggests that the role of known and unknown factors in

the bias has diminished. Therefore, α̂ X̂
t captures variation in α̂Y

t more strongly.
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4.1.1 Bias correction for US stock returns

The analysis above provides ample evidence for bias arising from factors. Therefore, we subject

the US stock return data to the two bias reduction methods. In Figure 2, we show the results of

bias correction, by presenting the time series of uncorrected tail-index estimates in tandem with

bias-corrected estimates.
Figure 2: Bias-corrected α̂
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(c) Left tail: α̂Y
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(d) α̂
Y´Ȳ
t´ , α̂

Y´Ȳ
t` and α̂mirror

t

This figure presents the time series of tail index estimates for US stock returns before and after applying the proposed bias reduction methods. The
y-axis shows the value of the estimates in terms of α . In panel (a) the red triangles (İ) show the Hill estimates for the left tail of Yjt ´Y t . The
black open downward triangles (Ź) are tail index estimates extracted from Yjt on the left side of the distribution. The bars surrounding the black
triangular estimates are sized to be two times the standard errors of these estimates. In panel (b) the blue triangles (Ĳ) show the Hill estimates
for the right tail of Yjt ´Y t . The black open upward pointing triangles (Ÿ) are tail index estimates extracted from Yjt on the right side of the
distribution. The green diamonds (�) in panel (c) are the estimates of the tail index after correcting for bias using the mirror method. Panel (d)
shows all three bias reduction estimates in a single plot. All estimates are extracted from the cross section each month and subsequently averaged
within a year for ease of presentation. The threshold is set at the 5% sample fraction.

Panels (a) and (b) in Figure 2 present the results of bias correction using the cross-sectional mean

for the left and the right tail, respectively. In panel (a), for the left tail, one notices a number of

outliers in the uncorrected tail estimates α̂Y
t´. These outliers can be dated at, respectively, the first
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(1973) and second oil crisis (1979), Black Monday (1987), the dot-com bubble burst (2001) and

the credit crisis (2008). The bias-corrected estimates α̂
Y´Ȳ
t´ for these crisis periods show that the

bias correction is substantial and significant. The corrected estimates are more in line with the

preceding and succeeding estimates. This can be understood from (7). Due to the negative value

of the shift parameter h, capturing the large declines in the market factor during crisis periods, the

estimated 1{αY
t´ is lowered and hence the estimated α is larger. This also explains why we see the

opposite pattern arise around crisis periods on the right tail α̂Y
t` presented in panel (b). The bias

corrected estimates imply that there are only few firms with large positive returns in times of crisis,

causing significant deviations from biased estimates.

Panels (c) present the mirror method for bias correction with inclusion of the (inverse) Hill esti-

mate on US stock returns, α̂Y
t´. Note that the green diamonds (mirror method estimates) also give

a substantial and significant correction during periods of market turmoil. When comparing panel

(a) and panel (c), very similar behavior is observed for the mirror estimate α̂mirror
t and α̂

Y´Ȳ
t´ . Both

correction methods, successfully dampen the effects of large factor realizations. This correspon-

dence is less clearly observed when comparing α̂mirror
t and the shift estimate in the right tail α̂

Y´Ȳ
t`

in panel (c) and (b), respectively. The mirror estimate does not increase to the same degree as

the shift estimate in the right tail during economic crises. Correcting for the large negative shift,

reveals that during crisis times α̂
Y´Ȳ
t` indicates that large positive stock returns are even more rare

than the uncorrected estimates would indicate. Panel (d) presents the three bias-corrected estimates

and the close correspondence between α̂
Y´Ȳ
t´ and α̂mirror

t .

We are now able to investigate whether the bias, likely caused by some of the factors, is still present

after bias correction. To enable a direct comparison between Table 2 and Table 3, the independent

variable ∆
f
t` is left unchanged, while in Table 3 the dependent variable α̂Y

t is bias-corrected. The

left side of Table 3 gives the effect of the shift method and the right side for the mirror method.

If the bias correction methods work (i.e., the bias arising due to the factors has been reduced),

one should observe less significant coefficients for the isolated bias of the different individual
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Table 3: Bias-corrected α̂ and factors
α̂

Y´Ȳ
t´ α̂mirror

t

∆M
t´ ∆SMB

t´ ∆HML
t´ ∆Mom

t´ ∆
Liq
t´ α̂ X̂

t´ ∆M
t´ ∆SMB

t´ ∆HML
t´ ∆Mom

t´ ∆
Liq
t´ α̂ X̂

t´

coef. 0.02 ´0.13˚ ´0.42˚˚ ´0.34 0.67˚˚˚ 0.99˚˚˚ 0.03 0.09˚ ´0.22˚ ´0.06 0.25 0.58˚˚˚

s.e. (0.05) (0.08) (0.20) (0.22) (0.26) (0.02) (0.03) (0.05) (0.13) (0.14) (0.16) (0.02)

R2 0.00 0.01 0.01 0.00 0.01 0.76 0.00 0.01 0.01 0.00 0.00 0.66

This table presents the regression results for the two bias reduction methods. In left side of the table the dependent variable is the Hill estimate for
the left tail of Y j´Y . In the right side of the table the dependent variable is the average of the left and right tail estimate on the Y j , i.e., α̂mirror

t . The
independent variable is the cross-sectional tail index where the factor’s effect is isolated (∆ f

t´). We include an unreported constant in the regressions.

With the exception of the sixth column (α̂ X̂
t´), the constants are significant and positive. The threshold u to estimate the Hill estimate is set to 5% of

the sample fraction. The asterisks in the table indicate: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.

factors. Moreover, the R2 of the regressions should decrease. The results for α̂
Y´Ȳ
t´ show that

the isolated bias with respect to the market (∆M
t´) and SMB factor (∆SMB

t´ ) lose almost all of their

explanatory power. While the estimated coefficients for both factors were close to 1 in Table 2,

now the estimates have almost become indistinguishable from 0. The R2 drops from 33% and 10%

to 0% and 1% for the isolated bias of the market and SMB factor, respectively. Bias reduction

thus breaks the link between the bias found in the Hill estimate and the factors. Although the

coefficients for ∆HML
t´ and ∆

Liq
t´ have become significant, the explanatory power remains low. The

R2 for the regression of α̂
Y´Ȳ
t´ on α̂ X̂

t´ has increased to 0.76 (and a similar result is found for the

mirror method). This indicates a far more intimate relationship between the bias-corrected estimate

and the true value of the tail index.

The results for α̂mirror
t in the right side of the table show that the relationship between the bias and

the estimates decreases significantly. For the original isolated bias of the market and SMB factors,

both coefficients become almost zero. Additionally, the R2 values decrease close to zero for all

factors. The relationship for the HML, momentum and liquidity factors are largely unchanged.

4.2 County population

Due to the lack of a clear emergent set of factors in the population size literature, we use PCA to

extract five PCs from 39 suggested factors. The first five PCs explain about 60% of the variation

in our original variables. Table B.3 in the Appendix presents summary statistics of the PCs.
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Table 4: Correlations of cross-sectional tail indices (county population growth)

PC1 PC2 PC3 PC4 PC5
α̂Y

t´ -0.45 -0.09 -0.34 0.18 0.28
α̂Y

t` -0.07 0.02 0.06 0.01 -0.05
∆

f
t´ -0.83 -0.22 -0.74 0.75 0.59

∆
f
t` 0.82 0.57 0.75 -0.68 -0.58

ρp∆
f
t´,∆

f
t`q -0.71 0.23 -0.64 -0.41 -0.45

(a) Threshold u at 5% of sample fraction

PC1 PC2 PC3 PC4 PC5
α̂Y

t´ -0.18 -0.17 -0.44 0.08 -0.05
α̂Y

t` 0.07 -0.08 -0.31 -0.08 0.06
∆

f
t´ -0.66 0.01 -0.39 -0.09 -0.16

∆
f
t` 0.42 0.05 0.40 0.17 0.20

ρp∆
f
t´,∆

f
t`q -0.31 -0.24 -0.15 -0.10 -0.10

(b) Threshold u at 0.5% of sample fraction

This table reports the correlations between the isolated effects of PCs on the cross-sectional Hill estimates and the PCs themselves. Here α̂Y
t´ and

α̂Y
t` are the cross-sectional Hill estimates for the cross section of county population growth for the left and right tail, respectively. The ∆

f
t , stated in

the third and fourth rows of each panel, is the cross-sectional tail index where the effect of the PCs is isolated, as defined in (11). The five factors
are the first five principal components from an assortment of variables suggested by the literature. The last row reports the correlation between the
left and right tail estimates of ∆

f
t . The left (right) panel presents the correlations where the threshold u is set to 5% (0.5%) of the sample fraction.

In the same vein as for the US stock data, Table 4 presents the correlations for the county population

growth data. We first consider panel (a), where tail index estimates are measured at 5% of the

sample fraction. The correlations between α̂Y
t and the PCs is weaker than for the US stock return

data. However, as is the case for the data on US stock returns, these correlations are stronger when

the effect of the PCs are isolated, as depicted in rows three and four. The correlation with the first

PC increases from -0.45 to -0.83 for the left tail and from -0.07 to positive 0.82 for the right tail.

Since the sign of a PC is indeterminate, one should not interpret the direction of the bias. But, as

the last row indicates, in accordance with our theory, the isolated bias in tail index estimates on the

left and right side of the distribution are negatively correlated for all but the second PC.

Panel (b) of Table 4 presents the correlations when the threshold is lowered to 0.5%. As with

the data on US stock returns, correlations decrease substantially in magnitude and frequently have

signs opposite from those found in panel (a). In the final row, negative correlations are still ob-

served between the isolated bias on the left and the right tail index estimates, but the magnitude

has decreased substantially. Thus again, lowering the threshold limits the influence of the factor

structure in cross-sectional tail index estimates.

Table 5 presents the results of the regressions between the isolated bias of the different individual

PCs (∆ f
t ) and the cross-sectional Hill estimate on Yt , i.e., α̂Y

t . The left side of the table illustrates the

results when using the estimate of the right cross-sectional tail index and ∆
f
t`, while the right side

uses the estimate of the left cross-sectional tail index. We observe that only the isolated bias with
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respect to PC1 in the left tail (∆PC1
t´ ) can significantly account for variation in the cross-sectional

tail index estimate of county population change (α̂Y
t´). For the right tail, ∆PC1

t` is not significant but

attains the highest R2 of the five principal components. This implies that the previously presented

correlations for the PCs most likely come with large standard errors. The high R2 attained by

α̂ X̂
t´ and α̂ X̂

t` in the last column further illustrates the marginal influence of the factor structure on

cross-sectional tail index estimates; in other words, the idiosyncratic shock X jt is dominant and the

factors contribute little towards explaining the dependent variable, only leading to small location

shifts in the cross-sectional observations. This contrasts with the strong results for financial return

data that highlight the role of the strength of the factors in the DGP that drives the bias.10

Table 5: Regression cross-sectional tail index (county population growth)
right tail left tail

∆PC1
t` ∆PC2

t` ∆PC3
t` ∆PC4

t` ∆PC5
t` α̂ X̂

t` ∆PC1
t´ ∆PC2

t´ ∆PC3
t´ ∆PC4

t´ ∆PC5
t´ α̂ X̂

t´

coef. ´0.18 0.006 0.08 0.16 ´0.15 0.66˚˚˚ 0.41˚ 0.13 0.32 0.29 0.44 0.63˚˚˚

s.e. (0.18) (0.29) (0.30) (0.30) (0.23) (0.11) (0.21) (0.51) (0.33) (0.40) (0.38) (0.12)

R2 0.02 0.00 0.00 0.007 0.01 0.44 0.08 0.00 0.02 0.01 0.03 0.38

This table presents the regression results for the cross-sectional Hill estimate extracted from US county level population growth. The dependent
variable in the left (right) side of the table is α̂Y

t`p´q, i.e., the Hill estimate for the right (left) tail of the cross-sectional county level population

growth. The independent variable ∆
f
t`, given in the first row, is the cross-sectional tail index where the effect is isolated with respect to the given

PC, as defined in (11). We include an unreported constant in the regressions, which are significant and positive for all regressions. The five PCs are
the first five principal components from an assortment of variables suggested by the literature. The tail index estimated on the disturbance terms
(α̂ X̂

t`) is given in the last column of each side. The Hill estimate is calculated by setting the threshold u at 5% of the sample fraction. The asterisks
in the table indicate the following: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.

The foregoing shows that while county population change may not be perfectly described by a

linear factor model, factor variation does bias tail index estimates in the cross section. Further-

more, the bias in the tail index estimates in the right and left tail are negatively correlated. Thus,

even when investigating factors with marginal explanatory power, inference on the basis of cross-

sectional tail index estimates may lead to incorrect conclusions.

10Table B.4 in Appendix B presents the regression results for a 0.5% threshold. The coefficient for ∆PC2
t` becomes

significant. As this is contained to the left tail only, it is possibly caused by correlated measurement errors in ∆PC2
t` and

α̂Y
t`.
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5 Conclusion

We show that tail index estimates representing scaling behavior extracted from a cross section

contain a bias. This bias is caused by common time-series fluctuations, which, for instance, can

originate from an underlying factor structure. The bias fluctuates with the factors in a systematic

fashion. For the left and right tail of the distribution the sign of the bias moves in exactly the

opposite direction. This data feature has, as of today, gone undetected. It offers an opportunity

to correct for the bias induced by the factors. We propose two methods to alleviate this bias.

Moreover, the bias also diminishes by looking deeper into the tail, but this may run against data

limitations of the cross section.

We find that data from a DGP with factors that have strong explanatory power, as is the case for

US stock return data, show considerable cross-sectional bias, which dominates fluctuations in tail

index estimates. In data with factors that have little explanatory power (US county population

growth) this bias is present, but weaker.

The conclusions drawn from studying tail index estimates extracted from the cross section could

therefore be misleading. The time variation in these estimates can be caused by fluctuations in

known factors, unknown factors, measurement error or the tail index. Therefore, we advise cau-

tion when attributing variation in the tail index estimates to the scaling behavior in the DGP. In

future cross-sectional studies regarding tail estimates, gauging the influence of factors is crucial

for unbiased interpretation of the results. In the paper, several ways are proposed to correct for the

possible bias that factors may cause.
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A Asymptotic distribution of the Hill Estimator

Below we provide a concise version of the steps to derive the asymptotic distribution of the Hill

estimator for cross-sectional observations, with varying second-order scale parameters, as in (9).

Furthermore, for consistency with the main text, we set D j “ αh j and H̄ “ 1{m
ř

h j. A detailed

exposition of the following derivation is available on request. See Haan and Ferreira (2006, p.76)

for the standard case. Consider the Hill estimator

1
pα
pumq “

1
m
řm

j“1

´

ln Y j
um

¯

1Y jąum

1
m
řm

j“11Y jąum

“
I1 pumq

I2 pumq
, (A.1)

say, where 1Y jąum is an indicator function for order statistics larger than um. Assume the idiosyn-

cratic shocks are drawn from a heavy-tailed distribution that satisfies (8), implying that the tail

expansion of the Yj distribution follows (9). By application of the Lindeberg-Feller theorem and

its Corollary stated in Serfling (1980), we obtain the asymptotic normality (AN) of I1 and I2 in

(A.1) as:

¨

˚

˝

I1

I2

˛

‹

‚

are

¨

˚

˝

AN
´

1
α

Cu´α
m ` α

α`1CH̄u´α´1
m p1`op1qq, 2

m
1

α2Cu´α
m p1`op1qq

¯

AN
`

Cu´α
m `CH̄u´α´1

m p1`op1qq, 1
mCu´α

m p1`op1qq
˘

˛

‹

‚

.

By using Minkowski’s inequality one shows that the condition of the Corollary can be invoked, to

guarantee that the Lindenberg-Feller theorem holds.

To show that the ratio I1{I2 is asymptotically normally distributed, we first show that I1 and I2 are

jointly normally distributed. Note that the covariance between I1 and I2 is:

covrI1, I2s “
1
m

1
α

Cu´α
m p1`op1qq.

Notice that the covariance is of the same order as the two variances.
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Using the results above, it follows that every linear combination of I1 and I2 converges to a normal

distribution, showing that I1 and I2 are jointly normally distributed. Furthermore, for any vector

pz, tq P tr0,1sˆ r0,1suztp0,0qu:11

pzI1` tI2q is AN
ˆ„ˆ

z
1
α
` t

˙

`

ˆ

z
α

α`1
` tα

˙

H̄u´1
m p1`op1qq



Cu´α
m ,

1
m

„

z2 2
α2 `2tz

1
α
` t2



Cu´α
m p1`op1qq

˙

.

Since we have established the joint asymptotic normality of the components of (A.1), one can

obtain the asymptotic normality for the ratio by using Cramér (1974)’s delta argument. A first-

order Taylor approximation of hpx,yq “ x{y around the point pI1 pmq , I2 pmqq gives

µI1 pmq
µI2 pmq

`
1

µI2 pmq
x´

µI1 pmq

µI2 pmq
2 y,

where µI1 and µI2 are the means of I1 and I2, respectively. This results in the following asymptotic

distribution for 1{pα pumq:

1
pα
pumq is

1
α
´

1
α`1

H̄u´1
m p1`op1qq`AN

ˆ

0,2
1
m

1
α2

uα
m

C

˙

´AN
ˆ

0,
1
m

1
α2

uα
m

C

˙

.

Then using covrI1, I2s to derive the variance of the combined distribution gives

1
α̂ pumq

´
1
α

is AN
ˆ

´
1

α`1
H̄u´1

m p1`op1qq ,
1
m

1
α2

uα
m

C

˙

. (A.2)

If the threshold um increases at the rate m1{pα`2q and define lim
mÑ8

H̄ “ ¯̄H , then we have the follow-

ing asymptotic result. For mÑ8

m1{pα`2q
ˆ

1
pα
pmq´

1
α

˙

d
Ñ N

ˆ

´
1

α`1
¯̄H,

1
α2

1
C

˙

.

11The analysis for the other three quadrants follows analogously.
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Finally, one can show that the asymptotic MSE minimizing optimal rate at which um increases is

wpmq “C
2

α`2

#

2α

ˆ

H̄
α`1

˙2
+´ α

α`2

m
2

α`2 .

This rate accounts for tail observations coming in more slowly than at the usual speed
?

m. Using

wpmq we can restate (A.2) as

a

wpmq
ˆ

1
pα
pumq´

1
α

˙

d
Ñ N

ˆ

´
1

?
2α
¨ sgnp ¯̄Hq,

1
α2

˙

. (A.3)

From which the influence of ¯̄H of the sign of the bias is immediate.
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B Tables
Table B.1: Correlation asset pricing factors.

Market SMB HML Mom Liq RMW CMA
Market 1.00 0.27 -0.27 -0.14 -0.01 -0.24 -0.40

SMB 0.27 1.00 -0.08 -0.05 0.00 -0.37 -0.08
HML -0.27 -0.08 1.00 -0.19 0.04 0.08 0.70
Mom -0.14 -0.05 -0.19 1.00 -0.01 0.11 -0.01

Liq -0.01 0.00 0.04 -0.01 1.00 -0.01 0.02
RMW -0.24 -0.37 0.08 0.11 -0.01 1.00 -0.01
CMA -0.40 -0.08 0.70 -0.01 0.02 -0.01 1.00

This table reports the partial correlation for the factors used in the financial application. The seven factors are the market, small-minus-big (SMB),
high-minus-low (HML), momentum (Mom), liquidity factor (Liq), robust-minus-weak (RMW) and the conservative-minus-aggressive (CMA)
factor.

Table B.2: Regression cross-sectional tail index 0.5% threshold
right tail left tail

∆M
t` ∆SMB

t` ∆HML
t` ∆Mom

t` ∆
Liq
t` α̂ X̂

t` ∆M
t´ ∆SMB

t´ ∆HML
t´ ∆Mom

t´ ∆
Liq
t´ α̂ X̂

t´

coef. 0.32˚˚˚ 0.47˚˚˚ 0.09 ´0.06 0.27˚ 0.80˚˚˚ 0.38˚˚˚ 0.41˚˚˚ ´0.04 ´0.06 0.17 0.81˚˚˚

s.e. (0.08) (0.09) (0.12) (0.14) (0.14) (0.03) (0.10) (0.10) (0.13) (0.15) (0.14) (0.03)

R2 0.02 0.04 0.00 0.00 0.01 0.51 0.02 0.02 0.00 0.00 0.00 0.58

This table presents the regression results for the effect of the factors on the cross-sectional Hill estimate for a lower threshold u. Here u is set to
0.5% of the sample fraction. The dependent variable in the left (right) side of the table is α̂Y

t`p´q, i.e., the Hill estimate for the right (left) tail of the

raw cross-sectional excess returns. The independent variable ∆
f
t`, stated in the first row, is the cross-sectional tail index where the factor f ’s effect

is isolated, as defined in (11). Furthermore, α̂ X̂
t` is the tail index estimated on the fitted disturbance terms of the five-factor asset pricing model: the

market, SMB, HML, momentum (Mom) and the liquidity (Liq) factor. We include an unreported constant in the regressions, which are significant
and positive for all regressions. The asterisks in the table indicate: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.

Table B.3: Summary of principal components for county data
PC1 PC2 PC3 PC4 PC5

Standard deviation 2.89 2.66 1.87 1.65 1.59
Proportion of variance 0.21 0.18 0.09 0.07 0.06

This table presents a summary of the PCs extracted from variables to explain changes in county population, as discussed in the data section. The
first two rows give the standard deviation and the proportion of variance explained by each principal component.

Table B.4: Regression cross-sectional tail index 0.5% threshold (county data)
right tail left tail

∆PC1
t` ∆PC2

t` ∆PC3
t` ∆PC4

t` ∆PC5
t` α̂ X̂

t` ∆PC1
t´ ∆PC2

t´ ∆PC3
t´ ∆PC4

t´ ∆PC5
t´ α̂ X̂

t´

coef. 0.49 ´1.43˚ ´0.31 ´0.52 0.34 1.04˚˚˚ 0.04 ´0.19 0.42 ´0.21 ´0.14 0.83˚˚˚

s.e. (0.43) (0.67) (0.38) (0.64) (0.72) (0.25) (0.21) (0.24) (0.33) (0.37) (0.33) (0.11)

R2 0.03 0.10 0.02 0.02 0.01 0.28 0.00 0.02 0.04 0.01 0.00 0.57
This table presents regression results for the effect of the PCs on the cross-sectional Hill estimates extracted from US county level population growth
for a lower threshold u, set at 0.5% of the sample fraction. Here the dependent variable in the left (right) side of the table is α̂Y

t`p´q, i.e., the Hill

estimate for the right (left) tail of the cross-sectional county level population growth. The independent variable ∆
f
t`, stated in the first row, is the

cross-sectional tail index where the PC f ’s effect is isolated, as defined in (11). Furthermore, α̂ X̂
t` is the tail index estimated on the fitted disturbance

terms of a model with the first five PC’s. These PCs are extracted from an assortment of variables stated in the online Appendix. We include an
unreported constant in the regressions. With the exception of the sixth (α̂ X̂

t`) and twelfth column (α̂ X̂
t´), the constants are significant and positive.

The asterisks in the table indicate the following: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.
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