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Abstract

Does extreme downside risk require a risk premium in the pricing of
individual assets? Extreme downside risk is a conditional measure
for the co-movement of individual stocks with the market, given that
the state of the world is extremely bad. It forms an extension of
Ang et al. (2006) downside beta framework. This measure, derived
from statistical extreme value theory, is non-parametric. Extreme
downside risk is used in double-sorted portfolios, where I control for
the five Fama-French and various non-linear asset pricing factors. I
find that the average annual excess return between high- and low-
exposure stocks is around 3.5%.
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1 Introduction

Returns in financial markets are characterized by extreme movements (Man-
delbrot, 1963; Fama, 1963; Jansen and De Vries, 1991). It is in these extreme
cases that investors are highly concerned about the performance of their port-
folio. The extreme movements of the market are not always reflected equally
in all individual stocks. Securities which are more sensitive to these extreme
negative shocks are undesirable and therefore should sell at a discount, i.e.
fetch a risk premium. In this paper, I propose an extreme downside depen-
dency measure, δ, which captures this risk. This non-parametric measure of
tail dependency based on extreme value theory (EVT) offers a new approach
for capturing extreme risk in asset prices. I find that investors demand a
3.5% risk premium for investing in a high relative to a low δ portfolio.

Prior literature on extreme downside or disaster risk in asset pricing mainly
focuses on theoretical models. Part of this literature includes higher mo-
ments to account for tail thickness. Samuelson (1970) as well as Harvey and
Siddique (2000) and Dittmar (2002) consider skewness and kurtosis as the
higher moments. Others, such as Rietz (1988), partially explain the Mehra
and Prescott (1985) equity premium puzzle by introducing an ‘extreme’ bad
state to the Arrow-Debreu paradigm. Barro (2006) extends this idea to in-
vestigate the impact of extreme risk on asset pricing facts and welfare costs.
He finds, as Rietz does, that the equity risk premium and the risk-free rate
puzzle can largely be explained by including an extreme bad state. Gabaix
(2012) extends these models by adding time variability of disaster risk. His
model is able to rationalize ten asset pricing puzzles, including the equity
premium puzzle.

Testing theoretical models of extreme downside risk has proven to be a chal-
lenge, as extreme events are only rarely observed. Several papers attempt to
overcome this challenge by studying different sources of extreme movements
in asset prices. Berkman et al. (2011), Bittlingmayer (1998) and Frey and
Kucher (2000) use major political crises as a measure of extreme risk. Ami-
hud and Wohl (2004) and Rigobon and Sack (2005) find a link between the
stock market and the second Iraq war.

In this paper I consider a novel approach. This approach employs Huang
(1991)’s non-parametric count measure to determine the dependence in the
tail between individual stocks and the market portfolio. In essence, the mea-
sure counts the number of joint excesses of the market return, Rm,t, and
individual stock return, Ri,t, conditional on Rm,t being stressed at time t.
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This captures, in a direct way, the dependence given that the world is in an
extremely bad state. This measure is directly related to the “recovery rate”
or “resilience” of a stock in Gabaix (2012). In his framework, stocks with
high resilience command a low-risk premium relative to low-resilience stocks,
leading to a cross-sectional risk premium.

The count measure necessitates the choice of a threshold, v and w, to de-
termine the tail region for the joint excesses of Ri,t and Rm,t, respectively.
These thresholds should distinguish the extreme behavior, characterized by
a power law, from the commonly observed events. Inspired by Bickel and
Sakov (2008), Danielsson et al. (2016) propose a methodology for locating
the ‘start’ of the tail by estimating the optimal number of order statistics
for the Hill (1975) estimator. To determine the optimal number of extreme
order statistics, they use a horizontal distance measure that minimizes the
maximum distance between the empirical and the semi-parametric distribu-
tion. These optimal thresholds for Ri,t and Rm,t are univariately determined,
and thus in a direct way the multi-variate extreme area for the dependence
measure is constructed.

There are currently other empirical approaches that attempt to measure
downside risk. To estimate a change in the probability of a tail event,
Kelly and Jiang (2014) estimate the conditional thickness of the tail from
the cross-section of returns on traded stocks. The month-by-month tail ex-
ponent estimates proxy tail risk in the economy. Although this measures
the cross-sectional dispersion in the lower tail, it is an indirect measure of
extreme downside risk in the economy. Secondly, the use of the estimator
of the tail exponent by Hill (1975) in the cross-section violates a necessary
independence assumption. The bias caused by violating the independence
assumption possibly proxies other latent factors Need citation.

A second approach in the literature uses the information of deep out of the
money (OTM) put options to capture tail risk. This approach utilizes the
difference between quadratic variation and integrated variance to isolate the
risk of jumps. Santa-Clara and Yan (2010) and Bollerslev and Todorov (2011)
infer tail risk from the OTM put options on the S&P 500 Index. Bollerslev
and Todorov (2011) use EVT to scale up the risk of medium jumps to large
jumps. They find that jump risk and fear of jumps accounts for two-thirds
of the equity risk premium. Siriwardane (2015) utilizes the difference be-
tween OTM put and call options to isolate jump risk for individual stocks.
He then sorts these into portfolios according to their jump risk to create a
‘high-minus-low’ factor.
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A third approach focuses on measuring the non-linear risk-return relation-
ship. Harvey and Siddique (2000) develop a measure of conditional skewness
in stock returns. As expected, they find that this measure of higher moment
covariation demands a negative risk premium. Ang et al. (2006) propose a
non-linear market model. They separate the market beta into a downside
and upside beta. They find that the conditional downside beta is differently
priced from the upside beta, and therefore argue that their conditional be-
tas provide a better risk profile of a stock. Although these measures focus
on the asymmetric nature of returns, they focus on the non-extreme part of
the return distribution. These measures employ commonly observed returns,
which contaminates the information in the tail region of the return distri-
bution. Therefore, extreme downside risk forms a natural extension to their
downside risk framework.

A fourth approach, which is most closely related to the measure proposed in
this paper, is to measure the tail dependence between stocks and a market
index. Van Oordt and Zhou (2016) use the EVT framework to construct a
non-parametric tail beta measure, however they do not find a cross-sectional
risk-return relationship. Chabi-Yo et al. (2018) use a convex combination of
parametric copulas to measure tail dependence between the return of a stock
and the market. With their lower tail dependence (LTD) measure they find
a cross-sectional risk premia of 4.32%. Extreme downside risk is similar to
their approach, in that δ is a limit copula. However, δ is non-parametric
and solely relies on tail observations for its estimation. Even though δ and
LTD are moderately positively correlated, the empirical analysis suggests
they capture different aspects of the risk-return relationship.

An advantage of the approach offered in this paper is that extreme downside
risk is a direct and simple measure of the relationship of the state of the
world and the pay-off of the financial asset. It is also not diluted by the ob-
servations in the center of the return distribution. As EVT shows, the count
measure has predictive value at very high but finite levels. Furthermore, I
refrain from using deep OTM options, e.g. as Siriwardane (2015) and Boller-
slev and Todorov (2011) do. OTM options can suffer from liquidity issues,
especially for individual companies.

To investigate whether investors care about extreme downside risk, I sort
stocks by their realized measure of extreme dependence. The difference in
annualized realized return between the low and high δ quintile portfolios is
about 3.5%. This shows that investors want to be compensated for bear-
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ing high extreme downside risk. It is possible that extreme downside risk
is a proxy for other existing risk factors. In the empirical asset pricing lit-
erature, double-sorted portfolios are employed to control for existing risk
factors. When controlling for the five factors by Fama and French (2015),
momentum (Carhart, 1997), liquidity (Stambaugh and Lubos, 2003), down-
side beta (Ang et al., 2006), cross-sectional tail risk (Kelly and Jiang, 2014),
coskewness, cokurtosis (Harvey and Siddique, 2000), and lower tail depen-
dence measure (Chabi-Yo et al., 2018), the premium on extreme downside
risk remains on average 3% and significant. This result is furthermore robust
for excluding financial firms, long-lived firms and variation in δ over time.

The positive premium is in line with the results of Kelly and Jiang (2014),
Siriwardane (2015) and Santa-Clara and Yan (2010), who also find higher
compensation for downside sensitivity. The risk premium of extreme down-
side risk is in excess of Ang et al. (2006) downside risk beta. This advocates
a further non-linearization of their downside beta framework.

Section 2 introduces the extreme dependence measure and the other non-
linear asset pricing factors. This is followed by section 3, which describes
the data that are used for the empirical analyses. Section 4 presents and
discusses the empirical results from the analyses, followed by the conclusion.

2 Methodology

This section consists of three parts. The first two elaborate on how extreme
dependence is measured and how I define the start of the tail. The third part
provides an overview of other systematic risk measures brought forth by the
literature.

2.1 Extreme dependence measures

Investors are interested in the performance of individual stocks relative to
their wealth in a particular state of the world. I examine the asset pricing
in the extremely bad states of the world. I am interested in observing ex-
treme negative excess stock return at time t, Ri,t, conditional on the market
excess return, Rm,t, being extremely negative at time t. To measure this
relationship, I employ the following count measure:

δi =

∑T

t=1
I{Ri,t<v,Rm,t<w}∑T

t=1
I{Rm,t<w}

, (1)
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where I is the indicator function that takes value 1 when Ri,t < v and
Rm,t < w, and 0 otherwise. The summation in the numerator counts the
number of paired observations that fall in the extreme quadrant, the area
where both Ri,t and Rm,t are extreme. Figure 1 gives an illustration of the
extreme quadrant. This measure can be viewed as the conditional probability,

P (Ri,t < v | Rm,t < w) =
P (Rm,t < w ∩Ri,t < v)

P (Rm,t < w)
.

This measure is a proxy for the level of dependence a stock has on extreme
market risk. For v and w going to infinity, the conditional probability tends
to the tail dependence measure presented in Hartmann et al. (2004). A
thorough derivation is provided in De Haan and Ferreira (2007). Under the
self-similarity property, the tail dependence model can be captured by the
count measure described above. The event that the count measure seeks to
quantify is the following: Given that the market has an extreme downside
event, how likely is it that stock i also exhibits an extreme movement in the
same direction?

2.2 Where does the tail start?

To measure extreme dependence accurately, it is essential to determine the
part of the tail where heavy-tailed behavior holds, i.e. the scaling behavior
described by power laws. This paper employs the EVT methodology to lo-
cate these points.

In EVT, the 1/γ in the Pareto distribution, P (X < x) = 1 − Ax−1/γ, de-
termines the shape of the tail. The power function in the Pareto distribution
is often used as an approximation of the tail probability for generic heavy-
tailed distributions.1 In the literature, 1/γ is often referred to as the tail
index. The level of 1/γ determines how many moments exist and thus how
heavy the tail of the distribution is.

1Consider the Hall and Welsh (1985) expansion, 1 − F (x) =
Ax−α

[
1 +Bx−β + o

(
x−β

)]
, of a heavy-tailed distribution function. For the Pareto

distribution, observe that the Hall expansion perfectly fits the first-order term. All of
the standard heavy-tailed distributions, like the Student-t, Pareto, symmetric stable
distribution or the unconditional distribution of the stationary solution to a GARCH(1,1)
process, satisfy the Hall expansion. Therefore, the Pareto function serves as a good
approximation for the tail of most heavy-tailed distributions.
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Figure 1: Graphic example δi
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This graph gives the scatter plot of Allegheny Power Systems Inc. returns and the corre-
sponding market returns. Here w (red) is the illustrative optimal threshold level for the
market returns and v (blue) is the illustrative optimal threshold level of stock i for the
left tail. The region under v and to the left of w is the extreme quadrant (shaded area)
for extreme downside risk.

The most popular estimator for γ is the Hill (1975) estimator,

γ̂ =
1

k

k∑
i=1

(log (Xn−i+1,n)− log (Xn−k,n)) , (2)

where Xn−i+1,n is the ith largest observation (order statistic) out of a sample
of size n and k is the number of observations in the tail that are used for
estimating γ.2 As can be seen from Equation (2), one has to choose the
nuisance parameter k, which determines how many extreme order statistics

2For the left tail the observations are multiplied by -1.
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are used in the estimation. Figure 2 shows the change in 1/γ̂ as the number
of order statistics included in the estimation increase. To locate k∗, the opti-

Figure 2: Hill plot Student-t(4)
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This graph depicts the estimate for 1/γ̂ = α̂ for different levels of k. The sample of 10,000
is simulated from a Student-t distribution with 4 degrees of freedom. This graph is often
referred to as the Hill plot.

mal number of order statistics for the Hill estimator, Danielsson et al. (2016)
introduce a simple method inspired by Bickel and Sakov (2008). Daniels-
son et al. (2016) use the Kolmogorov-Smirnov metric, but measured in the
quantile rather than the probability dimension. The choice of the quantile
dimension is motivated by the fact that a probabilistic mistake in the tail of
the distribution translates into a disproportionally large quantile mismatch,
which is the dimension that economists care about. They furthermore show
that this improves the quantile estimates deep in the tail region of the dis-
tribution.

In EVT, the Pareto distribution is often utilized to semi-parametrically esti-
mate the extreme quantiles. To fit the tail one only needs estimates for the
scale and tail index of the Pareto distribution. Via various simple transfor-
mations, Danielsson et al. (2016) arrive at their KS-distance metric,

k∗ = arginf
k=2,...,K

[
sup

j=1,...,K
|Xn−j,n − q (j, k)|

]
. (3)

The function q (j, k) is the semi-parametric quantile estimate at probability
(n−j)/n.3 I limit the area over which the above metric, i.e. KS-distance metric,
is measured to Xn−K,n ≥ x. Here K > k is large but is still in the tail.4 The

3See Appendix A.1 for the derivation of the semi-parametric quantile estimator.
4For example, 10% of the sample fraction. Danielsson et al. (2016) show that k∗ is

insensitive to the choice of K, once K is large enough. Alternatively, one can use all the
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k that produces the smallest maximum horizontal difference along all the
tail observations up to K is chosen as the optimal number of observations to
estimate the thickness of the tail. Through the optimal k, I also define the
start of the tail.

Here I define k∗i and k∗m as the optimal number of order statistics for stock i
and the market index, respectively. Once k∗i and k∗m are determined, I turn
to the multivariate problem of measuring the dependence. From the univari-
ate measures, k∗i and k∗m, an extreme dependence region is created, which
appears as the shaded area in Figure 1.

The region (Ri,t < v,Rm,t < w), where v and w correspond to the quantile
of the k∗thi and k∗thm order statistics respectively, is appointed as the extreme
quadrant. The number of extreme pairs of Ri,t and Rm,t, which fall in this
region, relative to the number of extreme market movements, k∗m, forms the
dependence measure in Equation (1).

The measurement of δi relies on rarely observed events. To limit the mea-
surement error of extreme downside risk, I use the whole sample of each
individual stock to estimate δi for the base results. The standard in the em-
pirical asset pricing literature is the use of subsamples (rolling windows) to
account for the time variation in systematic risk characteristics of stocks. To
account for the possible time variation in δi and the introduced look-ahead
bias, the analysis is repeated with δi,t. To estimate δi,t we only use data till
time t. This alleviates the look-ahead bias and allows for subsample variation
in δi. These results are presented in the robustness analysis of the empirical
results section.

2.3 Non-linear systematic risk

The asset pricing literature suggests several systematic risk factors that cap-
ture the asymmetry of the return distribution. In this paper these risk factors
are reconstructed and used as control variables.

Scott and Horvath (1980) advocate the inclusion of the sensitivity of higher-
order moments of the return distribution into the pricing kernel. Harvey and
Siddique (2000) use coskewness as a measure of heavy tails, where coskewness

positive observations in the sample.
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is defined as

coskewness =
E [εiε

2
m]√

E [ε2
i ]E [ε2

m]
.

Here εi is the residual from regressing the excess return of stock i on the
three Fama and French (1996) factors. The variable εm is the demeaned
excess return on the market portfolio. I also include a measure of cokurtosis:

cokurtosis =
E [εiε

3
m]√

E [ε2
i ]E [ε3

m]
.

Although coskewness and cokurtosis are not a direct measure of tail depen-
dence, they focus on asymmetry in the risk-return. However, the estimation
of both measures requires the full return distribution.

Dekkers and De Haan (1989) show that with EVT, only the tail observa-
tions are necessary to provide information about tail risk. Moreover, using
the vast number of center observations in the estimation might create a bi-
ased measure of tail dependence. An additional problem with the cokurtosis
and coskewness measures is that they need the second and third moment to
exist. This is not always the case for financial returns.

Ang et al. (2006) propose a non-linear market beta framework. They sepa-
rate the co-movement of an individual asset conditional on a down movement
and up movement of the market. Given that the market is below its aver-
age excess return, a beta is estimated. Accordingly, this is also done for
the above-average market excess returns. Given the focus of this paper on
downside risk and the mixed results for upside beta in Ang et al. (2006), only
downside beta is considered. Define downside beta as

β− =
cov (Ri, Rm|Rm < µm)

var (Rm|Rm < µm)
,

where µm is the average excess market return.

Ang et al. (2006) use all observations in their upside and downside beta
framework. However, the disaster literature to date points towards a sepa-
ration for the extremely bad states. That information is lost when using the
center observations in the downside beta measure. I utilized the informa-
tion in the tail observations as a further non-linearization of their risk-return
framework. By excluding the tail observations from the upside and downside
beta, the tail dependence measure can be estimated using these excluded
observations. Therefore, the factor proposed in this paper provides a natural
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extension of their framework.

Kelly and Jiang (2014) develop an approach to estimate the sensitivity of
stocks to changes in probability of extreme negative market drops. They
estimate the conditional tail index exponent, i.e. α̂cst , by exploiting the cross-
section of individual stock returns. They use pooled daily returns estimate
a monthly time series of tail indexes with the Hill estimator. They find that
the sensitivity to α̂cst carries a positive risk premium. Furthermore, they
show that α̂cst can predict the excess market return. However, using the Hill
estimator for the cross-section of returns can be problematic. Dependencies
in the cross-section cause biased estimates. The variation in α̂cst could there-
fore be driven by this bias and consequently proxy other dependencies in the
cross-section.

3 Data

The analysis uses US equity market data from 1963 to 2018. Stock market
data are obtained from the Center for Research in Security Prices (CRSP).
The CRSP database contains individual stock data from the NYSE, AMEX,
NASDAQ and NYSE Arca. The five Fama-French factor (Fama and French,
2015) data are provided by the website of Kenneth R. French, as is the
momentum factor by Carhart (1997). The data library contains daily and
monthly constructed Fama-French and momentum factors from 1963 to 2018.
The liquidity factor by Stambaugh and Lubos (2003) is obtained from the
website of Lubos Pastor. The book-to-market ratio, which is used as one of
the control variables, is obtained from the Compustat database. The Com-
pustat database contains data from 1950 to 2018 on balance sheet items of
the respective companies. The lower-tail dependence (LTD) factor is provide
by the authors (Chabi-Yo et al., 2018) and the sample is from 1963 till 2012.

In the main analysis, 19,904 stocks are included. The analysis is confined to
the period 1963 to 2018.5 Only stocks with more than 60 months of data are
used, as accuracy of EVT estimators typically requires a large total sample
size.6 Only a small fraction is informative for tail estimation. Table 1 gives
the descriptive statistics for extreme downside risk measure.

5The CRSP database and Fama-French factors dataset provide information going back
to 1926. For a detailed description of the construction of the Fama-French factors and the
momentum factor, please visit the data library on the website of Kenneth R. French.

6Stocks with exchange code -2, -1 or 0 are not included in the analysis. In addition,
only stocks with share code 10 and 11 are included in the analysis.
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In the Appendix, Figure 3 provides additional details on the distribution
of the sample fractions used for the estimation of the count measure. One
can see that the shape of the distribution of the k∗m and k∗i are different. The
distribution of k∗i shows that in most of the cases, a sample fraction lower
than 5% is chosen. This is also the case for k∗m, but less frequently. The
lower left graph shows the difference between k∗m and k∗i . The distribution
is centered around zero, but in some cases k∗m is much larger than k∗i . I per-
form additional robustness checks by taking a fixed threshold. Using a fixed
threshold of 1% of the sample fraction does not change the size of the aver-
age excess return for extreme downside risk, but makes the standard errors
larger.

Table 1: Descriptive statistics of extreme downside risk
# Firms Mean St Dev Min Max

All 19904 0.17 0.20 0.00 0.95
Agriculture, Forestry and Mining 2971 0.12 0.16 0.00 0.90

Contractors and Construction 296 0.14 0.17 0.00 0.90
Manufacturing 7597 0.15 0.18 0.00 0.95

Transport, Communications and Utilities 1656 0.19 0.20 0.00 0.95
Wholesale Trade 975 0.14 0.18 0.00 0.90

Retail Trade 1318 0.15 0.17 0.00 0.90
Finance, Insurance and Real Estate 5980 0.21 0.23 0.00 0.95

Business and Personal Services 2422 0.15 0.18 0.00 0.90
Health Services 437 0.15 0.19 0.00 0.88

Legal, Education and Social Services 134 0.14 0.19 0.00 0.80
Engineering and Accounting Services 496 0.18 0.22 0.00 0.90
Government (Public Administration) 57 0.17 0.20 0.00 0.81

This table displays the summary statistics of the extreme downside risk measures per
industry. The industries are arranged according to SIC codes. The first column reports
the number of companies that are included in an industry. Columns 2–5 report the mean,
standard deviation, maximum and minimum of the extreme downside risk realizations.
The data includes all the securities in the CRSP universe from 1963 to 2018.

4 Empirical results

Common practice in the asset pricing literature is to sort stocks in quintile
portfolios based on their factor realizations. Subsequently, the direction of
the average realized returns of the quintile portfolios are examined for the
predicted relationship.

When investigating the relationship between realized factor loadings and av-
erage returns, the results should normally hold for equal- and value-weighted
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portfolios. As pointed out by Ang et al. (2006), previous work finds that the
risk due to asymmetries is bigger among smaller stocks. I therefore follow
Ang et al. (2006) and Harvey and Siddique (2000) by focusing on equal-
weighted portfolios. In the Appendix, tables 6 and 7 report the results for
value-weighted portfolios. The results are mostly in the same direction; how-
ever, there is more variation in the size of the premium.
Table 2 presents the results for sorting stocks on their realized δi. The port-

Table 2: Single-sorted portfolios
Return Mean (δ) Mean (βm)

Low δ 8.07 0.01 0.90
2 8.44 0.05 0.91
3 9.24 0.11 0.94
4 10.26 0.22 1.00

High δ 11.51 0.43 1.07

High – Low 3.43 0.43 0.17
t-stat [6.59] [18.48]

This table lists the equal-weighted average excess returns and risk characteristics of stocks
sorted on extreme downside risk, δ, realizations. Here δ is calculated using daily observa-
tions for every individual asset that is listed on NYSE, AMEX, NASDAQ or NYSE Arca
between the years 1963 and 2018. Subsequently, the stocks are sorted into quintile portfo-
lios based on their realized extreme downside risk factor. The columns Return, Mean(δ)
and Mean(βm) report the average annualized monthly excess return, the average extreme
downside risk measure and the average market β measure of the stocks in the quintile
portfolios, respectively. They are measured with a 5-year rolling window. The row ‘High
- Low’ states the average annualized difference in the average realized return in the High
and Low portfolio. The last row presents the t-statistic of the difference with Newey and
West (1987) autocorrelation and heteroskedastic robust standard errors.

folios sorted on δi show an overall increase in the average realized returns.
This direction is in line with the risk-return relationship that one expects.
Investors want to be compensated, with a higher average return, for hold-
ing stocks that perform extremely badly in the extremely bad states of the
world.7 The difference in the annualized average return between the high-
and low-risk portfolio is about 3.5%. Furthermore, Table 2 shows that the
average βm in the sorted quantile portfolios is also increasing. It is possible
that δ is a proxy for existing risk factors, like the market factor.

To explicitly control for other factors, the asset pricing literature often uses
double-sorted portfolios. Furthermore, the double-sorting procedure can re-
veal non-linearities in the risk-return relationship. In the procedure, stocks

7This rationale applies the Arrow-Debreu state-pricing framework.
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are independently sorted on their exposure to an existing risk factor and
δi. They are subsequently allocated to their appropriately ranked portfolio.8

Table 3 presents the average realized portfolio returns of the double-sorted
portfolios where the market, small-minus-big, high-minus-low, momentum
and liquidity factors function as controls.

In panel (a), each portfolio in a row has approximately equal exposure to
the market factor. In a row, each portfolio along the columns has an in-
creasing level of δi. The realized average return among these portfolios is
increasing as well. This is true for all five rows. This shows that given the
exposure to market risk, stocks also get additionally compensated for their
exposure to extreme downside risk. The column ‘H-L’ shows the difference
in the average excess return between the fifth and first quintile portfolio for
given levels of market risk. These excess returns show that compensation
for bearing extreme downside risk, controlling for market risk, is between
2.12% and 4.06% annually. These premia have a robust t-statistic of 3.73
or higher. The first and fifth row of panel (a) shows that stocks that are
described as carrying low and high systematic market risk carry a more siz-
able risk premium for having a high level of δi. This shows that βm does not
fully characterize the systemic risk profile of these stocks and that δi provides
valuable differentiating information.

Panels (b) and (c) show the average ‘H-L’ realized return for δ controlling
for the small-minus-big and high-minus-low factors. The average ‘H-L’ ex-
cess returns are between 2.30% and 4.12% and significant. Furthermore, one
can also wonder if stocks that have a high extreme dependence are sensi-
tive to liquidity issues. Stambaugh and Lubos (2003) find that stocks with
high sensitivity to liquidity have a higher expected return. This is especially
a concern when the market experiences an extreme downward movement.
Panel (d) shows that controlling for the liquidity factor does not explain the
risk premium for extreme downside dependence. Furhermore, controlling for
Carhart’s (1997) momentum factor, in panel (e), does not significantly influ-

8The double-sorting results in this paper are acquired by an independent double-sorting
procedure. A concern with the independent double-sort procedure is the sparse number of
stocks in some of the sorting portfolios. In contrast to the dependent-sorting procedure,
with the independent sort one circumvents the issue of correlated factor loadings. For
a detailed description of the double-sorting procedure used in this paper, see Appendix
A.2. The results with a dependent-sorting procedure are quantitatively similar. In the
Appendix, Table 13 presents the cross-sectional correlation between the factor loadings
for each systemic risk factor. The market factor shares the highest correlation with δ, but
this correlation is relatively low. Therefore, it is unlikely that δ proxies for one of the
other factors.
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Table 3: Double-sorted portfolios
Low δ 2 3 4 High δ H-L t-stat

Low βm 5.34 5.92 6.99 8.28 9.40 4.06 [8.58]
2 7.24 7.79 7.91 8.49 9.55 2.31 [4.52]
3 8.24 8.59 8.56 9.50 10.55 2.31 [4.32]
4 9.43 9.42 10.10 10.75 11.55 2.12 [3.73]

High βm 11.43 11.70 13.28 13.44 14.40 2.98 [4.29]
panel (a)

Low βSMB 7.22 7.76 8.83 9.36 10.79 3.57 [5.33]
2 7.65 8.38 8.67 9.61 10.70 3.04 [6.03]
3 8.17 8.99 9.01 9.85 10.92 2.74 [5.63]
4 8.54 8.71 9.29 10.04 11.69 3.16 [6.16]

High βSMB 9.13 8.62 10.24 12.07 13.25 4.12 [7.21]
panel (b)

Low βHML 11.49 11.83 12.87 13.62 15.57 4.08 [5.43]
2 8.18 8.57 9.49 10.35 11.36 3.18 [6.21]
3 7.18 8.05 8.25 9.37 10.04 2.86 [6.18]
4 7.35 7.67 8.01 8.67 9.65 2.30 [4.90]

High βHML 6.52 6.67 7.80 8.86 9.95 3.43 [5.37]
panel (c)

Low βLiq 8.97 9.14 10.18 11.75 13.00 4.04 [6.16]
2 8.16 8.51 8.99 9.83 11.03 2.88 [5.16]
3 7.81 8.35 8.91 9.25 10.22 2.41 [5.85]
4 7.75 8.18 8.82 9.40 10.52 2.77 [5.68]

High βLiq 7.86 8.19 9.33 10.89 12.42 4.56 [6.61]
panel (d)

Low βMom 5.10 5.71 6.64 7.34 8.76 3.66 [5.10]
2 6.38 6.86 7.73 8.64 8.89 2.50 [4.68]
3 7.76 8.07 8.65 9.80 10.65 2.89 [5.67]
4 9.51 9.62 10.10 10.95 12.22 2.71 [5.59]

High βMom 11.83 11.93 12.92 14.50 16.49 4.66 [8.05]
panel (e)

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and δ. βm is the market beta. βHML and βSMB are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. βLiq is the liquidity beta by Stam-
baugh and Lubos (2003). βMom is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, δi, is estimated over the whole sample period
of an asset. I use the lowest 1% of the market excess return to estimate δi and the remain-
ing observations to estimate the control risk-factor exposures. The average realized return
of each formed portfolio is measured over the 5-year horizon used to estimate the factor
loadings. The seventh column provides the average difference between the realized return
on the high and low δi portfolios. The sample period is from 1963 to 2018. The t-statistics
in the last column are computed using the Newey and West (1987) autocorrelation and
heteroskedastic robust standard errors.
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ence the previously found results. This implies that δ is not likely functioning
as a proxy for other tested risk factors.9

Given that extreme downside risk is focused on the asymmetric risk-return
relationship, one needs to control for factors that attempt the same. Table
4 displays the average realized returns for the double-sorted portfolios with
the extreme downside risk and other alternative downside risk measures. To
integrate δ with Ang et al. (2006) framework, the months corresponding to
the lowest 1% market excess return observations are used to measure δi. The
remaining observations are used to estimate the alternative downside risk
measures, which are used as control variables. In this manner, δi forms a
natural extension of downside beta.

Panel (a) controls for downside beta. The average excess returns for ‘H-
L’ portfolios are positive and significant at a 1% confidence level. The
marginally lower t-statistics alludes to δi being more crudely measured by
taking a fixed threshold at 1% of the sample.10 As in Ang et al. (2006), I
also control for the exposure to downside beta relative to the market beta.
The average excess returns, in panel (b), are positive and significant at a
1% confidence level. This shows that the incremental information that is
contained in β− over the unconditional βm is different from the information
contained in δi.

By taking a higher-order Taylor approximation of an investor’s utility func-
tion, Scott and Horvath (1980) show that the higher-order moments in the
return distribution play a role in describing a stock’s systematic risk char-
acteristics. After controlling for coskewness in panel (c), the average excess
return on the ‘H-L’ portfolios for extreme downside risk is still positive and
significant. Due to the use of the numerous central observations, coskewness
lacks the focus to capture the information contained in the very extreme ob-
servations. As expected, in panel (d) LTD shows an increase in the average
return along the rows. Along the columns, δ displays a risk premium for
each level of LTD exposure. The premium is highest for low LTD stocks,
demonstrating the differentiating information contained in δ. I also control

9In Table 10 in the Appendix, I also control for the conservative-minus-aggressive and
robust-minus-weak factors by Fama and French (2015). Kelly and Jiang (2014) cross-
sectional tail risk measure is included in the analysis as well. Additionally, I control for
the book-to-market ratio and the variance of the asset. The average realized ‘H-L’ excess
returns for δ are approximately the same size and significant.

10The results where the extreme quadrant is determined with the KS-distance are quan-
titatively similar.
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Table 4: Double-sorted portfolios – non-linear factors
Low δ 2 3 4 High δ H-L t-stat

Low β− 5.14 5.70 6.32 7.21 8.96 3.82 [5.72]
2 7.40 7.32 7.74 8.42 8.85 1.45 [2.76]
3 8.25 9.05 9.02 9.10 9.52 1.26 [2.19]
4 9.29 10.02 10.32 10.44 11.07 1.78 [2.68]

High β− 13.26 12.66 13.54 14.23 15.61 2.36 [3.97]
panel (a)

Low β− − βm 7.35 8.36 8.47 9.64 10.12 2.76 [4.35]
2 7.59 8.47 8.77 9.51 10.52 2.94 [5.64]
3 7.79 8.87 9.36 9.74 11.19 3.40 [6.55]
4 8.80 9.00 9.97 10.65 12.32 3.53 [6.58]

High β− − βm 9.11 8.01 9.68 11.54 13.08 3.97 [6.11]
panel (b)

Low Coskewness 8.51 8.27 9.32 10.53 11.55 3.04 [6.02]
2 7.98 8.20 9.59 10.61 11.56 3.58 [7.80]
3 8.07 8.48 8.99 10.34 11.47 3.40 [5.83]
4 7.64 8.39 8.69 9.84 11.23 3.59 [5.84]

High Coskewness 8.07 8.96 9.77 9.72 11.34 3.27 [4.91]
panel (c)

Low LTD 5.45 5.68 7.13 8.72 10.13 4.68 [6.03]
2 6.53 7.26 7.80 8.58 10.04 3.51 [6.13]
3 7.67 7.96 8.60 9.18 10.10 2.42 [5.03]
4 8.24 8.66 8.80 9.97 10.56 2.31 [5.90]

High LTD 10.66 10.68 11.09 11.45 13.28 2.62 [4.07]
panel (d)

Low αcs 8.92 9.11 9.44 11.41 12.98 4.07 [6.93]
2 8.17 8.37 8.72 9.63 10.81 2.64 [5.62]
3 7.71 8.19 8.46 9.31 10.19 2.48 [5.74]
4 8.11 8.05 8.63 9.56 10.44 2.33 [4.93]

High αcs 7.88 8.79 10.86 10.84 12.50 4.62 [6.66]
panel (e)

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and δ. β− is the downside beta by Ang et al. (2006). coskewness is the risk factor,
by Harvey and Siddique (2000), which measure third moment co-movement. Furthermore,
αcs is Kelly and Jiang (2014) cross-sectional tail risk measure and LTD is the lower tail
dependence measure by Chabi-Yo et al. (2018). The factor exposures are estimated with
monthly return data each month with a 5-year rolling window. The extreme dependence
measure, δi, is estimated over the whole sample period of an asset. I use the lowest 1%
of the market excess return to estimate δi and the remaining observations to estimate
the control risk-factor exposures. The average realized return of each formed portfolio
is measured over the 5-year horizon used to estimate the factor loadings. The seventh
column provides the average difference between the realized return on the high and low δ
portfolios. The sample period is from 1963 to 2018. The t-statistics in the last column are
computed using the Newey and West (1987) autocorrelation and heteroskedastic robust
standard errors.
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for Kelly and Jiang (2014) cross-sectional tail index, αcs in panel (e). There
is a positive risk premium for δ over αcs. That δ and αcs capture differ-
ent aspects of the risk-return relationship can also be deduced from the low
correlation in the factor loading between αcs and δi in Table 13.

Fama-MacBeth regressions

The difference in the average return in the high δi and low δi portfolios does
not directly convey the risk premia for extreme downside risk for the average
stock. Furthermore, double-sorting stocks into portfolios does not allow one
to control for multiple factors simultaneously. To address these issues, I use
Fama and MacBeth (1973) regressions at the firm level.

For the Fama and MacBeth (1973) regressions I construct a factor based
on the δi measures. At the start of each year I sort all stocks with a dollar
value higher than 5 dollars, based on their measured δi. I construct a high
δi quintile portfolio and a low δi quintile portfolio. For each month in that
year the average return of the high quintile portfolio is subtracted from the
average return of the low quintile portfolio. This time series of ‘H-L’ monthly
returns forms the F δ factor. Subsequently, the factor is used to estimate the
factor loadings to extreme downside risk for each stock.

The first two columns in Table 5 display the price of risk for the existing fac-
tors pushed forward in the asset pricing literature. These two models serve
as a benchmark for the price of risk of F δ. Column 3 displays that the risk
premium for a unit exposure to F δ is about 1.99% annually. Given the 1.65
cross-sectional standard deviation in βF

δ
, a one standard deviation shift in

exposure leads to a 3.5% increase in risk premium.

The risk premium for F δ is robust to the inclusion of other existing factors,
as shown in columns 4 to 7.11 Of the factors focused on the asymmetry in
the risk-return relationship, in column 2 only LTD has a significant premium.
After including F δ, the risk premium diminishes and becomes insignificant.
This can be attributed to the simplicity of δ and the exclusive use of tail
observations to cleanly capture the non-linear tail relationship.

The last row in Table 5 reports the average R2 for each model. The exposure
to F δ explains about 6% of the cross-sectional variation in the average re-

11Cokurtosis is excluded from the Fama-MacBeth regressions due to near perfect corre-
lation with coskewness in various subsamples.
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Table 5: Fama-MacBeth regressions
1 2 3 4 5 6 7

Constant 4.17 4.41 6.32 5.13 5.48 5.10 4.50
(0)*** (0)*** (0)*** (0)*** (0)*** (0)*** (0)***

βm 5.10 5.31 4.79 4.37 4.98 5.20
(0)*** (0)*** (0)*** (0)*** (0)*** (0)***

βSMB 1.22 1.03 1.30 1.28
(0.02)** (0.05)** (0.01)*** (0.02)**

βHML -2.87 -2.68 -2.62 -2.89
(0)*** (0)*** (0)*** (0)***

βF
δ

1.99 2.11 1.99 2.01 2.00
(0)*** (0)*** (0)*** (0)*** (0)***

βMom 6.08 5.96 6.33
(0)*** (0)*** (0)***

βLiq 2.14 1.69 1.84
(0)*** (0.02)** (0)***

βα
cs

1.24 1.45
(0.7) (0.59)

βLTD 0.89 0.34
(0)*** (0.23)

Coskewness -9.76 -0.97
(0.51) (0.09)*

R2 7.44 18.65 6.17 10.71 13.86 17.55 19.57

This table shows the results of the second stage of the Fama and MacBeth (1973) regres-
sions of 60-month excess returns on realized-risk characteristics. An overlapping 60-month
rolling window is employed on assets that are listed on the NYSE, AMEX, NASDAQ or

NYSE Arca. βm is the market beta. βF
δ

is the beta based on the factor of extreme
downside risk, δ. The factor is constructed by subtracting the average return of the high-
est 20% minus the lowest 20% δ stocks. The portfolios are reconstructed at the start of
each year. βHML and βSMB are high-minus-low and small-minus-big betas (Fama and
French, 1996), respectively. βLiq is the liquidity beta by Stambaugh and Lubos (2003).
βMom is the momentum beta created by Carhart (1997). coskewness is the risk factor, by
Harvey and Siddique (2000), which measures third moment co-movement. Furthermore,
αcs is Kelly and Jiang (2014) cross-sectional tail risk measure and LTD is the lower-tail
dependence measure by Chabi-Yo et al. (2018). The sample period is from 1963 to 2018.
The p-values for the overlapping Fama-MacBeth regression are computed using the Newey
and West (1987) autocorrelation and heteroskedastic robust standard errors. The last row
reports the average R2 over the rolling windows of the second-stage regressions. *, **, ***
are indicators for the significance level at 10%, 5% and 1% of the coefficients, respectively.

turn. This is 1% below the R2 for the market model. Including both factors
increases the R2 relative to the market model by 3.3%. There is also an
increase in the R2 when comparing models 2 and 7. This implies that F δ is
a valuable addition in explaining the cross-section of the average return on
stocks.
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5 Robustness analyses

The results in Table 3 indicate that on average a positive premium for ex-
treme downside risk is demanded. A possibility is that the sensitivity to
the exposure is not equal among all firms. Table 8 shows the average excess
returns for stocks that are listed for longer than 180 months on one of the
stock exchanges.12 These stocks have a slightly lower premium for extreme
downside dependence. This is an indication that the exposure to the extreme
dependence risk is important for firms that are relatively young.

Financial firms, such as banks, are highly leveraged. The high leverage might
mean these firms are very sensitive during market turmoil. Table 1 shows
that for the financial sector, the average δ is the highest among the different
sectors. This could imply that the results are solely driven by financial firms.
In Table 9 I exclude financial firms and find that the results of the average
excess returns are comparable in size and significance.

In the analysis, δ is measured over the whole sample period. This implies
that the firm’s average δ is used in the analysis. To account for the possible
variability in a firm’s δ over time, in the rolling window analysis I use returns
till time t to estimate δt. Table 11 reports the average excess return on the
‘H-L’ portfolio. The excess returns are positive, significant and are on average
2% to 2.5%. This is lower than the base results. This is also reflected in the
estimation of the risk premia via the Fama and MacBeth (1973) procedure,
displayed in Table 12. The estimated risk premium is approximately 0.65%
and mostly significant. When including all non-linear risk factors, the need
for long time-series to measure δ is apparent. The risk premium for LTD
increases and remains significant, where the risk premium for δ diminishes
and becomes insignificant.

6 Conclusion

The dependence of a stock on the extreme movements of the market is an es-
sential part of understanding the compensation investors demand for bearing
risk. In these infrequent and extreme cases, investors care most about the
performance of their own portfolios. In this paper, a measure for the depen-
dence of stock returns on the extreme downward movements of the market
is created. This measure is derived from statistical extreme value theory.

12Here, time of being listed on one of the exchanges functions as a proxy for the maturity
of the firm.
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The measure of extreme downside risk is subsequently used in a portfolio
double sort and Fama and MacBeth (1973) regressions to explain the cross-
section of average excess returns. This reveals whether investors care about
this extreme dependence on top of other risk factors and whether extreme risk
fetches a premium or a discount. The results from the cross-sectional analy-
sis show that extreme downside risk carries a premium, as one would expect.
The difference in the average realized return between a quintile portfolio that
has high extreme downside risk and one that has low extreme downside risk is
around 3.5% per annum and remains significant in various robustness checks.
These results are in line with the literature to date. The disaster/jump risk
literature finds that investors indeed require a premium for stocks that have
high returns when tail risk is high. Ang et al. (2006) find in their downside
beta framework that there is a premium for the downside beta in excess to
the market factor. In line with the bisection of the beta model, I proposed
a further division of the risk sensitivity of the market model. I find that
adding extreme downside risk to Ang et al. (2006)’s downside beta forms a
significant and natural extension to their framework.
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A Appendix

A.1 Quantile estimator

The starting point for the quantile estimators is the first-order term in (4):

1− F (x) = Ax−1/γ
[
1 + o

(
x−α

)]
. (4)

This function is identical to a Pareto distribution if the higher-order terms
are ignored. By inverting (4), one gets the quantile function

x ≈
[

P (X ≥ x)

A

]−1/α

. (5)

To turn the quantile function into an estimator, the empirical probability
j/n is substituted for P (X ≥ x). A is replaced with the Weissman (1978)
estimator k

n
(Xn−k+1,n)α, and α is estimated by the Hill estimator.13 The

quantile is thus estimated by

q (j, k) = Xn−k+1,n

(
k

j

)1/α̂k

. (6)

Here j indicates that the quantile estimate is measured at probability (n−j)/n.

13The estimate of A is obtained by inverting P = Ax−α at threshold Xn−k+1,n.
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A.2 Double-sorted portfolio

To explicitly control for other factors, the asset pricing literature often uses
double-sorted portfolios. For time t, in months, we have excess return rt,i
for stock i, as the return in excess of the risk-free rate. To construct the
double-sorted portfolios, we first estimate the loading for factor F j, βF

j

i,t , for
the nt stocks. I use returns from time t to t+ 60 to estimate:

rt,i = βci,τ +
∑J

j=1
βF

j

i,τ F
j
t + εi,t. (7)

Here, J is the total number of factors included in the regression for stock i.
Given that I repeat the to-be-described procedure for different time windows,
I use τ to indicate the particular window. In the basic setup, the factors
included are the market, SMB, HML, momentum and liquidity factors. To
carry out the double sorting, we also need to estimate the extreme downside
risk, δi, for each stock. To estimate δi we use the whole available sample,

δi =

∑Ti

t∗=1
I{ri,t∗<v,Rm,t∗<w}∑Ti

t∗=1
I{rm,t∗<w}

, (8)

where t∗ are daily returns. Here, Ti is the total sample size of stock i, and
I is the indicator function. Furthermore, rm,t∗ is the excess return on the
market portfolio.

Dependent sorting

Given the loadings β̂F
j

i,τ and δ̂i, the stocks are first sorted by β̂F
j

i,τ and put into
quintile portfolios. Stocks with rank smaller than nt/5 are allocated to the
first quantile portfolio. Within each quintile portfolio, I subsequently sort
on δ̂i and allocate an equal number of stocks to five sub-quintile portfolios.
This totals 25 P b,d portfolios. Here b is the portfolio rank for β̂F

j

τ and d for
δ̂, ranging from 1 to 5 in both cases. For each P b,d the 5-year average excess

return,
t+59∑
i=t

rb,dt , is calculated. For a fixed b we subtract the average excess

return of P b,5 from P b,1, giving E[rH−Lt ]b. This shows for a given level of β̂F
j

τ

the premium of holding high δ̂ stocks relative to low δ̂ stocks.

The dependent sorting has a disadvantage. If the loadings β̂F
j

τ and δ̂i are
correlated, then the average δ̂ for given d over different b portfolios might dif-
fer. This makes it difficult to interpret the different E[rH−Lt ]b. To circumvent
this problem one can independently sort the stocks.
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Independent sorting

For the independent sort, stocks receive a rank for both factors indepen-
dently. This is in contrast to the sequential sorting in the dependent sort.
Given the rank for both factors, stocks with ranks for β̂F

j

i,τ and δ̂i smaller

than nt/5 are allocated to portfolio P 1,1. Stocks with rank β̂F
j

i,τ smaller than
nt/5 and a rank for δ̂i between nt/5 and 2nt/5 are allocated to P 1,2, and so on.
This guarantees that the average β̂F

j

i,τ is equal across the different d portfolios

for a given b and that the average δ̂ is equal across the different b portfolio
for given d. The disadvantage is that in some P b,d portfolios the number of
stocks can be limited.

Given either form of sorting, this procedure is repeated for τ = 1, ..., T − 60.

The E [rpt ] and E
[
r‘H−L′
t

]
b

are averaged over the different time periods and

reported. The time series of E
[
r‘H-L’
t

]
b

are utilized to estimate the Newey
and West (1987) heteroskedastic and autocorrelation robust t-statistics for

the E
[
r‘H−L′
t

]
b

excess returns, which are reported in the last column of the

tables.
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A.3 Tables and figures

Figure 3: Characteristics δi
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These graphs depict the distribution of the different characteristics of the extreme downside
risk measure. The upper-left picture depicts the sample fraction of the total data used to
define the extreme negative region of the stock. On the right you see this for the market.
The lower-left picture depicts the difference in the number of observations applied in the
count measure for the market and stock i. The picture on the bottom right gives the
distribution of the extreme downside risk measure.
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Table 6: Double-sorted value-weighted portfolios
Low δ 2 3 4 High δ H-L t-stat

Low βm 5.77 5.96 5.72 5.36 6.54 0.77 [1.18]
2 6.67 7.09 6.23 6.65 7.12 0.45 [0.98]
3 7.18 6.33 6.71 6.75 7.85 0.68 [1.19]
4 5.91 5.36 7.44 6.84 7.36 1.45 [3.31]

High βm 4.34 4.66 7.16 7.64 7.92 3.58 [4.34]
panel (a)

Low βSMB 6.83 5.10 7.11 6.96 7.42 0.58 [1.42]
2 6.06 6.40 6.77 6.68 7.06 1.00 [2.51]
3 5.77 7.12 6.13 6.78 6.67 0.90 [1.63]
4 4.72 6.49 6.78 6.02 7.55 2.83 [5.02]

High βSMB 4.13 3.94 5.76 6.40 8.48 4.35 [7.07]
panel (b)

Low βHML 8.58 8.34 8.75 9.44 9.90 1.31 [1.23]
2 6.41 6.31 8.03 7.25 7.17 0.76 [1.66]
3 5.87 5.50 5.79 6.15 6.45 0.58 [1.31]
4 5.85 6.11 5.96 6.09 6.71 0.85 [1.91]

High βHML 3.72 4.25 5.94 5.65 6.93 3.21 [4.66]
panel (c)

Low βLiq 6.28 6.39 6.32 7.15 8.42 2.14 [ 2.71]
2 6.59 5.16 6.54 7.04 7.95 1.36 [ 2.97]
3 6.05 5.96 7.25 6.62 7.49 1.44 [ 2.92]
4 7.28 6.36 6.48 6.92 6.73 -0.55 [-1.27]

High βLiq 3.75 6.11 8.22 5.98 6.89 3.14 [ 4.10]
panel (d)

Low βMom 0.80 2.01 3.26 3.44 2.55 1.75 [2.35]
2 4.76 3.06 4.83 5.10 5.50 0.74 [1.33]
3 7.12 5.88 6.65 6.53 7.68 0.55 [1.17]
4 8.66 8.88 8.46 8.81 9.17 0.50 [0.83]

High βMom 10.29 11.15 11.68 11.06 12.77 2.47 [3.77]
panel (e)

This table lists the value-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and δ. βm is the market beta. βHML and βSMB are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. βLiq is the liquidity beta by Stam-
baugh and Lubos (2003). βMom is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, δ, is estimated over the whole sample period
of an asset. The average realized return of each formed portfolio is measured over the
5-year horizon used to estimate the factor loadings. The seventh column provides the av-
erage difference between the realized return on the high and low δ portfolios. The sample
period is from 1963 to 2018. The t-statistics in the last column are computed using the
Newey and West (1987) autocorrelation and heteroskedastic robust standard errors.
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Table 7: Non-linear factors – value-weighted portfolios
Low δ 2 3 4 High δ H-L t-stat

Low β− 4.99 4.93 5.24 5.23 6.11 1.11 [1.63]
2 5.66 5.41 5.36 5.77 6.81 1.15 [2.07]
3 4.43 5.84 6.27 6.62 7.22 2.79 [5.03]
4 7.84 6.58 8.58 7.98 8.15 0.31 [0.75]

High β− 8.09 9.18 9.58 9.97 10.78 2.70 [3.32]
panel (a)

Low β− − βm 5.77 5.76 6.58 7.00 6.73 0.95 [2.13]
2 5.92 4.65 6.32 6.37 7.02 1.10 [2.63]
3 5.55 5.02 6.28 6.24 7.29 1.75 [3.75]
4 6.19 6.69 6.49 6.57 8.35 2.16 [3.75]

High β− − βm 7.25 6.08 6.42 7.17 8.56 1.31 [1.45]
panel (b)

Low Coskewness 6.76 6.94 7.27 7.08 7.32 0.56 [1.08]
2 5.55 6.30 7.16 6.83 7.89 2.34 [4.46]
3 5.63 5.92 6.36 6.52 7.65 2.01 [4.23]
4 5.76 5.17 6.42 6.92 7.37 1.61 [2.98]

High Coskewness 6.55 5.49 6.78 6.96 7.01 0.46 [0.72]
panel (c)

Low LTD 1.96 3.08 4.75 3.44 5.25 3.29 [2.88]
2 5.48 3.83 5.91 5.69 6.38 0.89 [1.48]
3 6.15 4.92 5.70 6.27 6.51 0.36 [0.85]
4 6.16 6.18 6.16 6.90 7.09 0.93 [1.98]

High LTD 6.77 6.50 8.07 6.26 8.14 1.37 [2.07]
panel (d)

Low αcs 4.88 6.53 6.92 7.25 8.75 3.87 [5.07]
2 7.19 6.67 7.29 6.70 7.69 0.51 [0.94]
3 6.63 6.14 7.18 7.04 7.35 0.72 [1.54]
4 5.91 4.96 6.63 6.55 6.53 0.62 [1.44]

High αcs 5.07 4.08 5.41 6.50 7.49 2.42 [3.00]
panel (e)

This table lists the value-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first col-
umn, and δ. βm is the market beta. β− is the downside beta by Ang et al. (2006).coskew-
ness is the risk factor, by Harvey and Siddique (2000), which measure third moment
co-movement. Furthermore, αcs is Kelly and Jiang (2014) cross-sectional tail risk measure
and LTD is the Lower tail dependence measure by Chabi-Yo et al. (2018). The factor
exposures are estimated with monthly return data each month with a 5-year rolling win-
dow. The extreme dependence measure, δ, is estimated over the whole sample period of
an asset. The average realized return of each formed portfolio is measured over the 5-year
horizon used to estimate the factor loadings. The seventh column provides the average
difference between the realized return on the high and low δ portfolios. The sample period
is from 1963 to 2018. The t-statistics in the last column are computed using the Newey
and West (1987) autocorrelation and heteroskedastic robust standard errors.
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Table 8: Double-sorted portfolios – traded more than 15 years
Low δ 2 3 4 High δ H-L t-stat

Low βm 6.16 6.71 7.35 8.70 9.81 3.66 [7.01]
2 7.70 8.32 8.20 8.62 9.70 2.00 [4.06]
3 8.78 9.27 8.91 9.60 10.85 2.07 [3.92]
4 10.29 10.05 10.53 10.94 11.42 1.13 [2.16]

High βm 12.24 12.92 13.75 14.10 14.43 2.19 [3.26]
panel (a)

Low βSMB 8.05 8.42 9.06 9.28 10.73 2.68 [4.39]
2 8.22 8.76 8.83 9.65 10.58 2.37 [4.98]
3 8.58 9.58 9.40 9.92 10.79 2.21 [4.28]
4 9.16 9.44 9.75 10.46 11.92 2.77 [5.85]

High βSMB 10.23 9.89 11.01 13.35 14.08 3.86 [7.80]
panel (b)

Low βHML 12.11 13.06 13.49 14.19 15.39 3.28 [4.10]
2 8.97 9.32 9.86 10.61 11.34 2.37 [4.73]
3 7.79 8.61 8.51 9.54 10.07 2.27 [4.73]
4 7.80 8.19 8.48 8.70 9.79 1.99 [4.18]

High βHML 7.55 7.64 8.14 9.22 10.27 2.72 [4.78]
panel (c)

Low βLiq 10.14 10.18 10.95 12.38 13.46 3.32 [5.25]
2 8.88 9.07 9.16 9.85 11.02 2.15 [3.67]
3 8.27 8.98 8.98 9.29 10.03 1.76 [4.23]
4 8.39 8.64 9.06 9.51 10.30 1.90 [4.12]

High βLiq 8.50 9.42 10.10 11.46 12.66 4.16 [6.11]
panel (d)

Low βMom 6.06 6.57 7.53 7.83 8.50 2.44 [3.51]
2 7.05 7.47 8.03 8.76 8.92 1.88 [3.54]
3 8.29 8.65 8.98 9.89 10.76 2.46 [4.72]
4 10.02 10.26 10.23 11.20 12.33 2.32 [4.68]

High βMom 12.82 13.15 13.49 14.67 16.90 4.08 [7.36]
panel (e)

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and δ. βm is the market beta. βHML and βSMB are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. βLiq is the liquidity beta by Stam-
baugh and Lubos (2003). βMom is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, δ, is estimated over the whole sample period of
an asset. The average realized return of each formed portfolio is measured over the 5-year
horizon used to estimate the factor loadings. The seventh column provides the average
difference between the realized return on the high and low δ portfolios. The assets have
to be listed consecutively on one of the exchanges for at least 180 months. The sample
period is from 1963 to 2018. The t-statistics in the last column are computed using the
Newey and West (1987) autocorrelation and heteroskedastic robust standard errors.
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Table 9: Double-sorted portfolios – non-financial firms
Low δ 2 3 4 High δ H-L t-stat

Low βm 6.01 6.26 7.57 8.55 9.54 3.53 [6.78]
2 7.34 7.98 8.15 8.52 9.88 2.54 [5.10]
3 8.39 8.53 8.80 9.77 10.64 2.26 [4.09]
4 9.47 9.48 10.29 10.88 11.82 2.35 [4.16]

High βm 11.89 12.12 13.22 13.71 14.50 2.60 [3.71]
panel (a)

Low βSMB 7.84 8.14 9.10 9.42 10.99 3.15 [4.80]
2 7.96 8.58 8.90 9.65 10.73 2.78 [5.30]
3 8.32 9.07 9.29 10.01 11.06 2.74 [5.08]
4 8.64 8.85 9.43 10.36 11.98 3.33 [6.11]

High βSMB 9.46 8.92 10.60 12.46 13.55 4.09 [7.62]
panel (b)

Low βHML 12.06 12.43 13.33 14.07 15.97 3.91 [5.09]
2 8.70 8.98 9.99 10.76 11.84 3.14 [5.67]
3 7.35 8.05 8.51 9.50 10.15 2.80 [5.59]
4 7.51 7.79 8.07 8.61 9.53 2.02 [4.52]

High βHML 6.77 6.82 7.76 8.84 9.92 3.15 [5.32]
panel (c)

Low βLiq 9.32 9.45 10.52 12.05 13.29 3.97 [6.10]
2 8.26 8.60 9.11 9.92 11.09 2.83 [4.96]
3 7.99 8.46 9.07 9.41 10.31 2.32 [5.43]
4 8.10 8.41 9.10 9.58 10.81 2.71 [5.48]

High βLiq 8.37 8.54 9.70 11.21 12.52 4.16 [5.95]
panel (d)

Low βMom 5.47 5.99 6.82 7.73 8.94 3.47 [4.76]
2 6.75 7.12 7.88 8.73 8.84 2.08 [3.89]
3 7.98 8.22 8.86 9.82 10.71 2.72 [5.09]
4 9.75 9.79 10.42 11.05 12.47 2.72 [5.58]

High βMom 12.23 12.17 13.41 14.92 16.81 4.57 [7.60]
panel (e)

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and δ. βm is the market beta. βHML and βSMB are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. βLiq is the liquidity beta by Stam-
baugh and Lubos (2003). βMom is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, δ, is estimated over the whole sample period
of an asset. The average realized return of each formed portfolio is measured over the
5-year horizon used to estimate the factor loadings. The seventh column provides the
average difference between the realized return on the high and low δ portfolios. Assets
with SIC codes between 6000 and 6200, i.e. financial firms, are excluded. The sample
period is from 1963 to 2018. The t-statistics in the last column are computed using the
Newey and West (1987) autocorrelation and heteroskedastic robust standard errors.
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Table 10: Double-sorted portfolios – additional factors
Low δ 2 3 4 High δ H-L t-stat

Low CMA 5.56 9.37 10.92 12.57 13.62 8.06 [8.64]
2 6.18 8.60 10.00 10.82 10.90 4.72 [7.23]
3 6.03 8.01 9.90 10.28 10.34 4.31 [6.21]
4 6.25 7.88 9.96 10.33 10.18 3.93 [4.83]

High CMA 6.76 9.41 11.10 11.55 10.82 4.06 [4.09]
panel (a)

Low RMW 5.55 8.99 11.06 11.78 11.39 5.84 [5.51]
2 5.46 7.50 9.27 9.70 9.88 4.42 [5.80]
3 5.70 7.69 9.39 10.13 10.41 4.71 [7.44]
4 6.56 8.47 10.16 10.86 11.09 4.53 [6.47]

High RMW 7.53 10.46 11.96 12.94 13.15 5.61 [5.99]
panel (b)

Low Cokurtosis 6.77 9.82 11.09 11.65 10.72 3.95 [3.65]
2 5.98 9.08 10.68 11.22 10.92 4.94 [5.42]
3 6.01 8.51 10.62 11.06 11.48 5.48 [7.21]
4 5.49 8.00 10.24 10.83 11.63 6.14 [7.98]

High Cokurtosis 6.11 7.92 9.65 10.87 11.45 5.34 [8.96]
panel (c)

Low Bk-Mkt 9.33 11.42 13.54 15.05 15.83 6.50 [15.86]
2 6.93 8.96 11.22 11.86 12.17 5.24 [ 9.33]
3 5.72 8.45 9.94 10.56 10.34 4.62 [ 6.67]
4 4.60 8.43 9.86 10.24 9.43 4.84 [ 4.98]

High Bk-Mkt 3.33 6.52 8.45 9.14 9.25 5.92 [ 4.42]
panel (d)

Low σRi 6.47 7.47 7.95 8.02 8.47 2.00 [ 3.77]
2 7.40 8.06 9.14 9.65 10.14 2.74 [ 4.63]
3 7.76 8.87 10.18 11.50 12.24 4.49 [ 8.14]
4 8.45 10.35 11.43 13.60 14.87 6.42 [ 8.47]

High σRi 3.75 8.23 11.86 14.00 16.35 12.60 [12.47]
panel (e)

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and δ. βCMA and βRMW are respectively the conservative-minus-aggressive and
robust-minus-weak betas by Fama and French (2015). cokurtosis is the risk factor which
measure fourth moment co-movement (used in Ang et al. (2006)). Bk-Mkt is the book-
to-market ratio, and σRi is the variance of the asset return. The factor exposures are
estimated with monthly return data each month with a 5-year rolling window. The extreme
dependence measure, δ, is estimated over the whole sample period of an asset. The
average realized return of each formed portfolio is measured over the 5-year horizon used to
estimate the factor loadings. The seventh column provides the average difference between
the realized return on the high and low δ portfolios. The sample period is from 1963 to
2018. The t-statistics in the last column are computed using the Newey and West (1987)
autocorrelation and heteroskedastic robust standard errors.
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Table 11: Double-sorted portfolios – conditional δ
Low δt 2 3 4 High δt H-L t-stat

Low βm 5.91 6.59 7.03 8.27 8.49 2.58 [5.19]
2 7.38 8.08 7.96 8.53 9.04 1.66 [2.60]
3 8.18 9.18 9.11 9.44 9.60 1.42 [1.99]
4 9.13 10.22 10.45 10.90 10.41 1.29 [1.77]

High βm 10.78 12.78 13.25 13.41 13.27 2.66 [2.89]
panel (a)

Low βSMB 7.12 8.37 8.60 9.87 9.91 2.79 [3.59]
2 7.60 8.75 8.93 9.74 9.91 2.31 [4.74]
3 8.12 9.26 9.35 10.11 10.22 2.10 [4.36]
4 8.11 9.32 9.59 10.37 10.75 2.65 [4.46]

High βSMB 8.85 10.12 10.82 11.29 11.75 2.96 [4.47]
panel (b)

Low βHML 11.10 12.80 12.91 14.52 14.29 3.19 [3.94]
2 8.02 8.72 9.70 10.80 10.72 2.70 [4.80]
3 7.17 8.55 8.56 9.24 9.61 2.44 [4.46]
4 7.20 8.47 8.22 8.64 8.97 1.77 [3.09]

High βHML 6.81 7.53 7.86 8.14 8.90 2.10 [2.93]
panel (c)

Low βLiq 8.43 10.46 10.59 11.66 12.23 3.80 [5.27]
2 7.97 8.96 9.30 10.14 10.18 2.21 [3.91]
3 7.76 8.61 8.87 9.59 9.77 2.00 [3.57]
4 7.49 8.87 8.95 9.50 9.79 2.30 [3.74]

High βLiq 8.11 9.10 9.60 10.53 10.71 2.61 [4.51]
panel (d)

Low βMom 5.28 6.64 7.06 7.51 6.90 1.62 [2.15]
2 6.34 7.54 7.85 8.63 8.21 1.87 [3.32]
3 7.66 8.87 8.94 9.72 9.90 2.23 [4.14]
4 9.10 10.04 10.31 11.03 11.61 2.51 [4.29]

High βMom 11.40 12.50 13.06 14.55 15.44 4.05 [6.32]
panel (e)

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and δt. β

m is the market beta. βHML and βSMB are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. βLiq is the liquidity beta by Stam-
baugh and Lubos (2003). βMom is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, δt, is estimated with information till time t.
The average realized return of each formed portfolio is measured over the 5-year horizon
used to estimate the factor loadings. The seventh column provides the average difference
between the realized return on the high and low δt portfolios. The sample period is from
1963 to 2018. The t-statistics in the last column are computed using the Newey and West
(1987) autocorrelation and heteroskedastic robust standard errors.
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Table 12: Price of risk – conditional δ
1 2 3 4 5 6 7

Constant 4.17 4.41 4.89 9.02 5.62 5.48 5.03
(0)*** (0)*** (0)*** (0)*** (0)*** (0)*** (0)***

βm 5.10 5.31 5.03 4.81 5.22 5.23
(0)*** (0)*** (0)*** (0)*** (0)*** (0)***

βSMB 1.22 0.83 1.00 1.00
(0.02)** (0.12) (0.04)** (0.05)*

βHML -2.87 -2.82 -2.73 -2.96
(0)*** (0)*** (0)*** (0)***

βF
δ

0.66 0.46 0.64 0.64 0.34
(0.03)** (0.18) (0.02)** (0.02)** (0.25)

βMom 6.08 5.37 5.28
(0)*** (0)*** (0)***

βLiq 2.14 0.48 0.98
(0)*** (0.35) (0.02)**

βα
cs

1.24 -2.79
(0.7) (0.17)

βLTD 0.89 1.19
(0)*** (0)***

Coskewness -9.76 -0.25
(0.51) (0.62)

R2 7.44 18.65 9.35 3.01 12.93 15.71 17.72
This table shows the results of the second stage of the Fama and MacBeth (1973) regres-
sions of 60-month excess returns on realized-risk characteristics. An overlapping 60-month
rolling window is employed on assets that are listed on the NYSE, AMEX, NASDAQ or

NYSE Arca. βm is the market beta. βF
δt

is the beta based on the factor of extreme
downside risk, δt. δt is estimated with information up to time t. The factor is constructed
by subtracting the average return of the highest 20% minus the lowest 20% δt stocks.
The portfolios are reconstructed at the start of each year. βHML and βSMB are high-
minus-low and small-minus-big betas (Fama and French, 1996), respectively. βLiq is the
liquidity beta by Stambaugh and Lubos (2003). βMom is the momentum beta created
by Carhart (1997). coskewness is the risk factor, by Harvey and Siddique (2000), which
measure third moment co-movement. Furthermore, αcs is Kelly and Jiang (2014) cross-
sectional tail risk measure and LTD is the lower-tail dependence measure by Chabi-Yo
et al. (2018). The sample period is from 1963 to 2018. The p-values for the overlapping
Fama-MacBeth regression are computed using the Newey and West (1987) autocorrela-
tion and heteroskedastic robust standard errors. The last row reports the average R2

over the rolling windows of the second-stage regressions. *, **, *** are indicators for the
significance level at 10%, 5% and 1% of the coefficients, respectively.
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Table 13: Correlation matrix of factor loadings
1 2 3 4 5 6 7 8 9 10 11 12 13 14

βm 1.00 0.20 -0.24 -0.05 -0.09 0.24 0.92 -0.19 0.14 -0.11 0.01 0.45 0.07 0.28
βSMB 0.20 1.00 -0.02 -0.08 -0.11 -0.06 0.27 0.15 -0.11 0.03 0.01 0.48 -0.00 -0.37
βHML -0.24 -0.02 1.00 0.08 -0.03 -0.04 -0.24 -0.02 -0.05 0.06 -0.08 -0.16 -0.08 -0.02
βMom -0.05 -0.08 0.08 1.00 -0.02 0.00 -0.04 0.04 -0.15 0.09 0.10 -0.08 -0.00 -0.05
βLiq -0.09 -0.11 -0.03 -0.02 1.00 -0.03 -0.06 0.09 -0.19 0.05 0.10 -0.03 -0.01 -0.03

δ 0.24 -0.06 -0.04 0.00 -0.03 1.00 0.21 -0.07 0.06 -0.03 -0.01 -0.03 0.01 0.26
β− 0.92 0.27 -0.24 -0.04 -0.06 0.21 1.00 0.20 0.05 -0.05 0.02 0.53 0.07 0.14

β− − βm -0.19 0.15 -0.02 0.04 0.09 -0.07 0.20 1.00 -0.21 0.15 0.01 0.23 0.01 -0.34
Coskewness 0.14 -0.11 -0.05 -0.15 -0.19 0.06 0.05 -0.21 1.00 -0.58 0.04 -0.01 0.01 0.17
Cokurtosis -0.11 0.03 0.06 0.09 0.05 -0.03 -0.05 0.15 -0.58 1.00 -0.05 -0.00 -0.01 -0.11

βαCS 0.01 0.01 -0.08 0.10 0.10 -0.01 0.02 0.01 0.04 -0.05 1.00 0.08 0.00 -0.03
σRi 0.45 0.48 -0.16 -0.08 -0.03 -0.03 0.53 0.23 -0.01 -0.00 0.08 1.00 0.06 -0.41

Bk-Mkt 0.07 -0.00 -0.08 -0.00 -0.01 0.01 0.07 0.01 0.01 -0.01 0.00 0.06 1.00 0.07
log(size) 0.28 -0.37 -0.02 -0.05 -0.03 0.26 0.14 -0.34 0.17 -0.11 -0.03 -0.41 0.07 1.00

This table describes the pairwise correlation between factor loadings that are used in this paper. The
correlations shown are the average correlations measured over a 5-year overlapping rolling window. The
number of firms included in the analysis is between 1437 and 3889.
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